Mostrar el registro sencillo del ítem

dc.contributor.author
Dantas, Sheldon  
dc.contributor.author
Jung, Mingu  
dc.contributor.author
Mazzitelli, Martin Diego  
dc.contributor.author
Rodríguez, Jorge Tomás  
dc.date.available
2025-03-17T14:54:00Z  
dc.date.issued
2025-01  
dc.identifier.citation
Dantas, Sheldon; Jung, Mingu; Mazzitelli, Martin Diego; Rodríguez, Jorge Tomás; On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products; Universitat Autònoma de Barcelona; Publicacions Matematiques; 69; 1; 1-2025; 109-145  
dc.identifier.issn
0214-1493  
dc.identifier.uri
http://hdl.handle.net/11336/256352  
dc.description.abstract
We study the (uniform) strong subdifferentiability of norms of Banach spaces P(N X, Y ∗) of all continuous N-homogeneous polynomials and tensor products of Banach spaces, namely X⊗b π· · · ⊗b πX and ⊗b πs,NX. Among other results, we characterize when the norms of spaces P(N'p, 'q), P(N lM1, lM2), and P(N d(w, p), lM2) are strongly subdifferentiable. Analogous results for multilinear mappings are also obtained. Since strong subdifferentiability of a dual space implies reflexivity, we improve some known results in [38, 48, 49] (in the spirit of Pitt's compactness theorem) on the reflexivity of spaces of N-homogeneous polynomials and N-linear mappings. Concerning the projective (symmetric) tensor norms, we provide positive results by considering the subsets U and Us of elementary tensors on the unit spheres of X⊗b π · · · ⊗b πX and ⊗b πs,N X, respectively. Specifically, we prove that the norms of ⊗b πs,N '2 and '2⊗b π · · · ⊗b π'2 are uniformly strongly subdifferentiable on Us and U, and that the norms of c0⊗b πs c0 and c0⊗b πc0 are strongly subdifferentiable on Us and U in the complex case.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Universitat Autònoma de Barcelona  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
TENSOR PRODUCT  
dc.subject
SPACE OF MULTILINEAR FUNCTIONS AND POLYNOMIALS  
dc.subject
STRONG SUBDIFFERENTIABILITY  
dc.subject
BISHOP-PHELPS-BOLLOBÁS PROPERTY  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-06T10:54:24Z  
dc.journal.volume
69  
dc.journal.number
1  
dc.journal.pagination
109-145  
dc.journal.pais
España  
dc.journal.ciudad
Barcelona  
dc.description.fil
Fil: Dantas, Sheldon. Universidad de Valencia; España. Universidad de Granada; España  
dc.description.fil
Fil: Jung, Mingu. Korea Institute For Advanced Study; Corea del Sur  
dc.description.fil
Fil: Mazzitelli, Martin Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; Argentina  
dc.description.fil
Fil: Rodríguez, Jorge Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina  
dc.journal.title
Publicacions Matematiques  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://raco.cat/index.php/PublicacionsMatematiques/article/view/433276  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dialnet.unirioja.es/servlet/articulo?codigo=9869728  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.5565/PUBLMAT6912505