Mostrar el registro sencillo del ítem
dc.contributor.author
Dantas, Sheldon
dc.contributor.author
Jung, Mingu
dc.contributor.author
Mazzitelli, Martin Diego
dc.contributor.author
Rodríguez, Jorge Tomás
dc.date.available
2025-03-17T14:54:00Z
dc.date.issued
2025-01
dc.identifier.citation
Dantas, Sheldon; Jung, Mingu; Mazzitelli, Martin Diego; Rodríguez, Jorge Tomás; On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products; Universitat Autònoma de Barcelona; Publicacions Matematiques; 69; 1; 1-2025; 109-145
dc.identifier.issn
0214-1493
dc.identifier.uri
http://hdl.handle.net/11336/256352
dc.description.abstract
We study the (uniform) strong subdifferentiability of norms of Banach spaces P(N X, Y ∗) of all continuous N-homogeneous polynomials and tensor products of Banach spaces, namely X⊗b π· · · ⊗b πX and ⊗b πs,NX. Among other results, we characterize when the norms of spaces P(N'p, 'q), P(N lM1, lM2), and P(N d(w, p), lM2) are strongly subdifferentiable. Analogous results for multilinear mappings are also obtained. Since strong subdifferentiability of a dual space implies reflexivity, we improve some known results in [38, 48, 49] (in the spirit of Pitt's compactness theorem) on the reflexivity of spaces of N-homogeneous polynomials and N-linear mappings. Concerning the projective (symmetric) tensor norms, we provide positive results by considering the subsets U and Us of elementary tensors on the unit spheres of X⊗b π · · · ⊗b πX and ⊗b πs,N X, respectively. Specifically, we prove that the norms of ⊗b πs,N '2 and '2⊗b π · · · ⊗b π'2 are uniformly strongly subdifferentiable on Us and U, and that the norms of c0⊗b πs c0 and c0⊗b πc0 are strongly subdifferentiable on Us and U in the complex case.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Universitat Autònoma de Barcelona
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
TENSOR PRODUCT
dc.subject
SPACE OF MULTILINEAR FUNCTIONS AND POLYNOMIALS
dc.subject
STRONG SUBDIFFERENTIABILITY
dc.subject
BISHOP-PHELPS-BOLLOBÁS PROPERTY
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-06T10:54:24Z
dc.journal.volume
69
dc.journal.number
1
dc.journal.pagination
109-145
dc.journal.pais
España
dc.journal.ciudad
Barcelona
dc.description.fil
Fil: Dantas, Sheldon. Universidad de Valencia; España. Universidad de Granada; España
dc.description.fil
Fil: Jung, Mingu. Korea Institute For Advanced Study; Corea del Sur
dc.description.fil
Fil: Mazzitelli, Martin Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; Argentina
dc.description.fil
Fil: Rodríguez, Jorge Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina
dc.journal.title
Publicacions Matematiques
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://raco.cat/index.php/PublicacionsMatematiques/article/view/433276
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dialnet.unirioja.es/servlet/articulo?codigo=9869728
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.5565/PUBLMAT6912505
Archivos asociados