Mostrar el registro sencillo del ítem
dc.contributor.author
Perdomo, Mariano Miguel
dc.contributor.author
Clementi, Luis Alberto
dc.contributor.author
Vega, Jorge Ruben
dc.date.available
2025-03-17T11:26:13Z
dc.date.issued
2024-08
dc.identifier.citation
Perdomo, Mariano Miguel; Clementi, Luis Alberto; Vega, Jorge Ruben; Estimation of quality variables in a continuous train of reactors using recurrent neural networks-based soft sensors; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 253; 8-2024; 1-10
dc.identifier.issn
0169-7439
dc.identifier.uri
http://hdl.handle.net/11336/256295
dc.description.abstract
The first stage in the industrial production of Styrene-Butadiene Rubber (SBR) typically consists in obtaining a latex from a train of continuous stirred tank reactors. Accurate real-time estimation of some key process variables is of paramount importance to ensure the production of high-quality rubber. Monitoring the mass conversion of monomers in the last reactor of the train is particularly important. To this effect, various soft sensors (SS) have been proposed, however they have not addressed the underlying complex dynamic relationships existing among the process variables. In this work, a SS based on recurrent neural networks (RNN) is developed to estimate the mass conversion in the last reactor of the train. The main challenge is to obtain an adequate estimate of the conversion both in its usual steady-state operation and during its frequent transient operating phases. Three architectures of RNN: Elman, GRU (Gated Recurrent Unit), and LSTM (Long Short-Term Memory) are compared to critically evaluate their performances. Moreover, a comprehensive analysis is conducted to assess the ability of these models to represent different operational modes of the train. The results reveal that the GRU network exhibits the best performance for estimating the mass conversion of monomers. Then, the performance of theproposed model is compared with a previously-developed SS, which was based on a linear estimation model with a Bayesian bias adaptation mechanism and the use of Control Charts for decision-making. The model proposed here proved to be more efficient for estimating the mass conversion of monomers, particularly during transient operating phases. Finally, to evaluate the methodology utilized for designing the SS, the same RNN architectures were trained to online estimate another quality variable: the mass fraction of Styrene bound to the copolymer.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SOFT SENSOR
dc.subject
CONTINOUS PROCESS
dc.subject
RUBBER PRODUCTION
dc.subject
RECURRENT NEURAL NETWORK
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Estimation of quality variables in a continuous train of reactors using recurrent neural networks-based soft sensors
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-17T10:33:42Z
dc.journal.volume
253
dc.journal.pagination
1-10
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Perdomo, Mariano Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina
dc.description.fil
Fil: Clementi, Luis Alberto. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina
dc.description.fil
Fil: Vega, Jorge Ruben. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.journal.title
Chemometrics and Intelligent Laboratory Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0169743924001448
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2024.105204
Archivos asociados