Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Inferring the interaction rules of complex systems with graph neural networks and approximate Bayesian computation

Gaskell, Jennifer; Campioni, Nazareno; Morales, Juan ManuelIcon ; Husmeier, Dirk; Torney, Colin J.
Fecha de publicación: 01/2023
Editorial: The Royal Society
Revista: Journal of The Royal Society Interface
ISSN: 1742-5662
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ecología

Resumen

Inferring the underlying processes that drive collective behaviour in biological and social systems is a significant statistical and computational challenge. While simulation models have been successful in qualitatively capturing many of the phenomena observed in these systems in a variety of domains, formally fitting these models to data remains intractable. Recently, approximate Bayesian computation (ABC) has been shown to be an effective approach to inference if the likelihood function for a model is unavailable. However, a key difficulty in successfully implementing ABC lies with the design, selection and weighting of appropriate summary statistics, a challenge that is especially acute when modelling high dimensional complex systems. In this work, we combine a Gaussian process accelerated ABC method with the automatic learning of summary statistics via graph neural networks. Our approach bypasses the need to design a model-specific set of summary statistics for inference. Instead, we encode relational inductive biases into a neural network using a graph embedding and then extract summary statistics automatically from simulation data. To evaluate our framework, we use a model of collective animal movement as a test bed and compare our method to a standard summary statistics approach and a linear regression-based algorithm.
Palabras clave: COLLECTIVE MOVEMENT , APROXIMATE BAYESIAN COMPUTATION , SIMULATION MODEL
Ver el registro completo
 
Archivos asociados
Tamaño: 1.079Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/256028
URL: https://royalsocietypublishing.org/doi/10.1098/rsif.2022.0676
DOI: http://dx.doi.org/10.1098/rsif.2022.0676
Colecciones
Articulos(INIBIOMA)
Articulos de INST. DE INVEST.EN BIODIVERSIDAD Y MEDIOAMBIENTE
Citación
Gaskell, Jennifer; Campioni, Nazareno; Morales, Juan Manuel; Husmeier, Dirk; Torney, Colin J.; Inferring the interaction rules of complex systems with graph neural networks and approximate Bayesian computation; The Royal Society; Journal of The Royal Society Interface; 20; 198; 1-2023; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES