Artículo
Laws of Large Numbers, Spectral Translates and Sampling Over LCA Groups
Fecha de publicación:
09/2024
Editorial:
Springer
Revista:
Journal Of Fourier Analysis And Applications
ISSN:
1069-5869
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Kluvánek extended the Whittaker-Kotel’nikov-Shannon theorem to the abstract harmonic analysissetting over a LCA group G. In this context, the classical condition for f ∈ L2(R) to be band limited isreplaced by fb having its support essentially contained in a transversal set of a compact quotient group.This condition was later shown to be necessary in general. Moreover, the classical interpolation formulais also equivalent to a Plancherel like isometric formula involving the L2(G) norm of f and the norm ofthe sequence of its samples over a subgroup H. Here, recalling some Laws of Large Numbers, we willprove an equivalent result for the support of the spectral measure µX of a Gaussian stationary randomprocess X, indexed over a LCA group G. The conditions are formulated in terms of an almost sureisometric formula involving the sample variances of X, and its samples over a subgroup H respectively
Palabras clave:
Sampling
,
Stationary Random Processes
,
LCA groups
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Medina, Juan Miguel; Laws of Large Numbers, Spectral Translates and Sampling Over LCA Groups; Springer; Journal Of Fourier Analysis And Applications; 30; 67; 9-2024; 1-32
Compartir
Altmétricas