Mostrar el registro sencillo del ítem
dc.contributor.author
Ojeda, Jonathan Jesús
dc.contributor.author
Islam, M. Rafiq
dc.contributor.author
Correa Luna, Martín
dc.contributor.author
Gargiulo, Juan Ignacio
dc.contributor.author
Clark, Cameron Edward Fisher
dc.contributor.author
Rotili, Diego Hernán
dc.contributor.author
García, Sergio Carlos
dc.date.available
2025-03-10T10:40:12Z
dc.date.issued
2023-06
dc.identifier.citation
Ojeda, Jonathan Jesús; Islam, M. Rafiq; Correa Luna, Martín; Gargiulo, Juan Ignacio; Clark, Cameron Edward Fisher; et al.; Field and in-silico analysis of harvest index variability in maize silage; Frontiers Media; Frontiers in Plant Science; 14; 6-2023; 1-17
dc.identifier.issn
1664-462X
dc.identifier.uri
http://hdl.handle.net/11336/255753
dc.description.abstract
Maize silage is a key component of feed rations in dairy systems due to its high forage and grain yield, water use efficiency, and energy content. However, maize silage nutritive value can be compromised by in-season changes during crop development due to changes in plant partitioning between grain and other biomass fractions. The partitioning to grain (harvest index, HI) is affected by the interactions between genotype (G) × environment (E) × management (M). Thus, modelling tools could assist in accurately predicting changes during the inseason crop partitioning and composition and, from these, the HI of maize silage. Our objectives were to (i) identify the main drivers of grain yield and HI variability, (ii) calibrate the Agricultural Production Systems Simulator (APSIM) to estimate crop growth, development, and plant partitioning using detailed experimental field data, and (iii) explore the main sources of HI variance in a wide range of G × E × M combinations. Nitrogen (N) rates, sowing date, harvest date, plant density, irrigation rates, and genotype data were used from four field experiments to assess the main drivers of HI variability and to calibrate the maize crop module in APSIM. Then, the model was run for a complete range of G × E × M combinations across 50 years. Experimental data demonstrated that the main drivers ofobserved HI variability were genotype and water status. The model accurately simulated phenology [leaf number and canopy green cover; Concordance Correlation Coefficient (CCC)=0.79-0.97, and Root Mean Square Percentage Error (RMSPE)=13%] and crop growth (total aboveground biomass, grain + cob, leaf, and stover weight; CCC=0.86-0.94 and RMSPE=23-39%). In addition, for HI,CCC was high (0.78) with an RMSPE of 12%. The long-term scenario analysis exercise showed that genotype and N rate contributed to 44% and 36% of the HI variance. Our study demonstrated that APSIM is a suitable tool to estimate maize HI as one potential proxy of silage quality. The calibrated APSIM model can now be used to compare the inter-annual variability of HI for maize forage crops based on G × E × M interactions. Therefore, the model provides new knowledge to (potentially) improve maize silage nutritive value and aid genotype selection and harvest timing decision-making.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Frontiers Media
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SILAGE QUALITY
dc.subject
APSIM
dc.subject
CROP MODELLING
dc.subject
CALIBRATION
dc.subject
FORAGE
dc.subject
ZEA MAYS L.
dc.subject.classification
Agricultura
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Field and in-silico analysis of harvest index variability in maize silage
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-10T09:48:25Z
dc.journal.volume
14
dc.journal.pagination
1-17
dc.journal.pais
Suiza
dc.description.fil
Fil: Ojeda, Jonathan Jesús. University of Queensland; Australia
dc.description.fil
Fil: Islam, M. Rafiq. University of Western Sydney; Australia
dc.description.fil
Fil: Correa Luna, Martín. University of Western Sydney; Australia
dc.description.fil
Fil: Gargiulo, Juan Ignacio. No especifíca;
dc.description.fil
Fil: Clark, Cameron Edward Fisher. University of Western Sydney; Australia
dc.description.fil
Fil: Rotili, Diego Hernán. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cerealicultura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
dc.description.fil
Fil: García, Sergio Carlos. University of Western Sydney; Australia
dc.journal.title
Frontiers in Plant Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/fpls.2023.1206535
Archivos asociados