Artículo
Perfectly Accurate Membership Inference by a Dishonest Central Server in Federated Learnin
Fecha de publicación:
08/2024
Editorial:
IEEE Computer Society
Revista:
Ieee Transactions On Dependable And Secure Computing
ISSN:
1941-0018
e-ISSN:
1545-5971
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Federated Learning is expected to provide strong privacy guarantees, as only gradients or model parameters but no plain text training data is ever exchanged either between the clients or between the clients and the central server. In this paper, we challenge this claim by introducing a simple but still very effective membership inference attack algorithm, which relies only on a single training step. In contrast to the popular honest-but-curious model, we investigate a framework with a dishonest central server. Our strategy is applicable to models with ReLU activations and uses the properties of this activation function to achieve perfect accuracy. Empirical evaluation on visual classification tasks with MNIST, CIFAR10, CIFAR100 and CelebA datasets show that our method provides perfect accuracy in identifying one sample in a training set with thousands of samples. Occasional failures of our method lead us to discover duplicate images in the CIFAR100 and CelebA datasets.
Palabras clave:
FEDERATED
,
LEARNING
,
MEMBERSHIP INFERENCE
,
NEURAL NET
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CSC)
Articulos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Articulos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Citación
Pichler, Georg; Romanelli, Marco; Rey Vega, Leonardo Javier; Piantanida, Pablo; Perfectly Accurate Membership Inference by a Dishonest Central Server in Federated Learnin; IEEE Computer Society; Ieee Transactions On Dependable And Secure Computing; 21; 4; 8-2024; 4290-4296
Compartir
Altmétricas