Mostrar el registro sencillo del ítem
dc.contributor.author
Aron, Richard
dc.contributor.author
Dimant, Veronica Isabel

dc.contributor.author
García Lirola, Luis C.
dc.contributor.author
Maestre, Manuel
dc.date.available
2025-03-07T10:49:33Z
dc.date.issued
2024-05
dc.identifier.citation
Aron, Richard; Dimant, Veronica Isabel; García Lirola, Luis C.; Maestre, Manuel; Linearization of holomorphic Lipschitz functions; Wiley VCH Verlag; Mathematische Nachrichten; 297; 8; 5-2024; 3024-3051
dc.identifier.issn
0025-584X
dc.identifier.uri
http://hdl.handle.net/11336/255623
dc.description.abstract
Let X and Y be complex Banach spaces with B_X denoting the open unit ball of X. This paper studies various aspects of the {em holomorphic Lipschitz space} $mathcal HL_0(B_X,Y), endowed with the Lipschitz norm. This space consists of the functions in the intersection of the sets Lip_0(B_X,Y) of Lipschitz mappings and $mathcal H^infty(B_X,Y) of bounded holomorphic mappings, from B_X to Y. Thanks to the Dixmier-Ng theorem, mathcal HL_0(B_X, mathbb C)$ is indeed a dual space, whose predual $mathcal G_0(B_X) shares linearization properties with both the Lipschitz-free space and Dineen-Mujica predual of $mathcal H^infty(B_X). We explore the similarities and differences between these spaces, and combine techniques to study the properties of the space of holomorphic Lipschitz functions. In particular, we get that mathcal G_0(B_X) contains a 1-complemented subspace isometric to and that mathcal G_0(X) has the (metric) approximation property whenever X has it. We also analyze when mathcal G_0(B_X) is a subspace of mathcal G_0(B_Y), and we obtain an analogue of Godefroy´s characterization of functionals with a unique norm preserving extension in the holomorphic Lipschitz context.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley VCH Verlag

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Holomorphic function
dc.subject
Lipschitz function
dc.subject
Linearization
dc.subject
Symmetric regularity
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Linearization of holomorphic Lipschitz functions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-05T15:09:26Z
dc.journal.volume
297
dc.journal.number
8
dc.journal.pagination
3024-3051
dc.journal.pais
Alemania

dc.journal.ciudad
Weinheim
dc.description.fil
Fil: Aron, Richard. Kent State University; Estados Unidos
dc.description.fil
Fil: Dimant, Veronica Isabel. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: García Lirola, Luis C.. Universidad de Zaragoza; España
dc.description.fil
Fil: Maestre, Manuel. Universidad de Valencia; España
dc.journal.title
Mathematische Nachrichten

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/mana.202300527
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/mana.202300527
Archivos asociados