Mostrar el registro sencillo del ítem

dc.contributor.author
Campos, Túlio M.  
dc.contributor.author
Petit, Andres  
dc.contributor.author
Freitas, Ricardo O.  
dc.contributor.author
Tavares, Luís Marcelo  
dc.date.available
2025-02-28T15:21:45Z  
dc.date.issued
2023-10  
dc.identifier.citation
Campos, Túlio M.; Petit, Andres; Freitas, Ricardo O.; Tavares, Luís Marcelo; Online prediction of pressing iron ore concentrates in an industrial HPGR. Part 1: Modeling approach; Pergamon-Elsevier Science Ltd; Minerals Engineering; 201; 10-2023; 1-17  
dc.identifier.issn
0892-6875  
dc.identifier.uri
http://hdl.handle.net/11336/255448  
dc.description.abstract
High-pressure grinding rolls reached great popularity for pressing iron ore concentrates since its first application in the 1990s. For this particular application, mathematical models describing HPGR performance on the basis of operating conditions and feed characteristics have successfully been used by the authors to map industrial-scale operations under controlled conditions. Despite these important advances, this modeling approach has only been used so far offline and under steady-state conditions. The present work applies the Modified Torres and Casali model proposed by the authors as a novel online model coupled with real-time information from an industrial-scale HPGR pressing iron ore concentrates. The model is demonstrated to be able to predict throughput, power and product size distribution on the basis of data available online from the process. Results showed capability of the model to map the operation giving a realistic description of the process. A new method was proposed to circumvent the model limitations when describing HPGR operating with worn rolls, and bench-scale data was used to improve description of the size reduction in industrial-scale.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Iron Ore  
dc.subject
HPGR  
dc.subject
Modelin  
dc.subject
Pellet Feed  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Online prediction of pressing iron ore concentrates in an industrial HPGR. Part 1: Modeling approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-27T09:14:14Z  
dc.journal.volume
201  
dc.journal.pagination
1-17  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Campos, Túlio M.. Universidade Federal do Rio de Janeiro; Brasil  
dc.description.fil
Fil: Petit, Andres. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Sede Tandil del Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires; Argentina. Universidade Federal do Rio de Janeiro; Brasil  
dc.description.fil
Fil: Freitas, Ricardo O.. Vale S.A.; Brasil  
dc.description.fil
Fil: Tavares, Luís Marcelo. Universidade Federal do Rio de Janeiro; Brasil  
dc.journal.title
Minerals Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0892687523002200  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.mineng.2023.108206