Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

AQSA—Algorithm for Automatic Quantification of Spheres Derived from Cancer Cells in Microfluidic Devices

Peñaherrera Pazmiño, Ana BelénIcon ; Isa Jara, Ramiro FernandoIcon ; Hincapié Arias, Elsa LourdesIcon ; Gómez, Silvia; Belgorosky, DeniseIcon ; Agüero, Eduardo ImanolIcon ; Tellado, Matías Nicolás; Eijan, Ana MariaIcon ; Lerner, BetianaIcon ; Perez, Maximiliano SebastianIcon
Fecha de publicación: 11/2024
Editorial: MDPI
Revista: Journal of Imaging
ISSN: 2313-433X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Nanotecnología

Resumen

Sphere formation assay is an accepted cancer stem cell (CSC) enrichment method. CSCsplay a crucial role in chemoresistance and cancer recurrence. Therefore, CSC growth is studied inplates and microdevices to develop prediction chemotherapy assays in cancer. As counting spheres cultured in devices is laborious, time-consuming, and operator-dependent, a computational program called the Automatic Quantification of Spheres Algorithm (ASQA) that detects, identifies, counts, and measures spheres automatically was developed. The algorithm and manual counts were compared, and there was no statistically significant difference (p = 0.167). The performance of the AQSA is better when the input image has a uniform background, whereas, with a nonuniform background, artifacts can be interpreted as spheres according to image characteristics. The areas of spheres derived from LN229 cells and CSCs from primary cultures were measured. For images with one sphere, area measurements obtained with the AQSA and SpheroidJ were compared, and there was no statistically significant difference between them (p = 0.173). Notably, the AQSA detects more than one sphere, compared to other approaches available in the literature, and computes the sphere area automatically, which enables the observation of treatment response in the sphere derived from the human glioblastoma LN229 cell line. In addition, the algorithm identifies spheres with numbers to identify each one over time. The AQSA analyzes many images in 0.3 s per image with a low computational cost, enabling laboratories from developing countries to perform sphere counts and area measurements without needing a powerful computer. Consequently, it can be a useful tool for automated CSC quantification from cancer cell lines, and it can be adjusted to quantify CSCs from primary culture cells. CSC-derived sphere detection is highly relevant as it avoids expensive treatments and unnecessary toxicity.
Palabras clave: ARTIFICIAL INTELLIGENCE , CANCER , CSCS , ALGORITHM
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 848.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/255362
URL: https://www.mdpi.com/2313-433X/10/11/295
DOI: http://dx.doi.org/10.3390/jimaging10110295
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Peñaherrera Pazmiño, Ana Belén; Isa Jara, Ramiro Fernando; Hincapié Arias, Elsa Lourdes; Gómez, Silvia; Belgorosky, Denise; et al.; AQSA—Algorithm for Automatic Quantification of Spheres Derived from Cancer Cells in Microfluidic Devices; MDPI; Journal of Imaging; 10; 11; 11-2024; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES