Mostrar el registro sencillo del ítem

dc.contributor.author
Allegrini, Franco  
dc.contributor.author
Olivieri, Alejandro Cesar  
dc.date.available
2025-02-27T13:13:39Z  
dc.date.issued
2023-08  
dc.identifier.citation
Allegrini, Franco; Olivieri, Alejandro Cesar; Two sides of the same coin: Kernel partial least-squares (KPLS) for linear and non-linear multivariate calibration. A tutorial; Elsevier; Talanta Open; 7; 8-2023; 100235-100235  
dc.identifier.issn
2666-8319  
dc.identifier.uri
http://hdl.handle.net/11336/255314  
dc.description.abstract
A tutorial is presented on the operation and properties of the non-linear multivariate regression model kernel partial least-squares (KPLS). After the discussion of a simple non-linear univariate problem, solved by regressing a dependent variable on the projection of an independent variable onto a set of Gaussian functions, the principles of KPLS are introduced for processing non-linear multivariate data. The following aspects are covered: (1) the estimation of the model sensitivity as a function of analyte concentration from error propagation concepts, (2) the proposal of a parameter measuring the degree of non-linearity, to avoid a black-and-white description of data sets as either linear or non-linear, (3) the use of the model parameters for variable selection. The application of KPLS to both simulated and experimental data sets is discussed, in the latter case involving near infrared spectra employed for the determination of quality parameters in foodstuff samples and fluorescence spectroscopic data for the study of systems of biological relevance. Computer codes written in the popular MATLAB and R environments are also provided.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DETECTION OF NON-LINEARITY  
dc.subject
FLUORESCENCE DATA  
dc.subject
KERNEL PARTIAL LEAST-SQUARES  
dc.subject
MULTIVARIATE CALIBRATION  
dc.subject
NEAR INFRARED SPECTRA  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Two sides of the same coin: Kernel partial least-squares (KPLS) for linear and non-linear multivariate calibration. A tutorial  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-27T09:49:56Z  
dc.journal.volume
7  
dc.journal.pagination
100235-100235  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina  
dc.description.fil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina  
dc.journal.title
Talanta Open  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.talo.2023.100235  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2666831923000553