Artículo
Machine learning model interpretability using SHAP values: application to igneous rock classification task
Antonini, Antonella Soledad
; Tanzola, Juan Emilio
; Asiain, Lucia Montserrat
; Ferracutti, Gabriela Roxana
; Castro, Silvia Mabel; Bjerg, Ernesto Alfredo
; Ganuza, María Luján
; Tanzola, Juan Emilio
; Asiain, Lucia Montserrat
; Ferracutti, Gabriela Roxana
; Castro, Silvia Mabel; Bjerg, Ernesto Alfredo
; Ganuza, María Luján
Fecha de publicación:
22/07/2024
Editorial:
Elsevier
Revista:
Applied Computing and Geosciences
ISSN:
2590-1974
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
El Fierro intrusive body is one of the bodies that compose the La Jovita–Las Aguilas mafic-ultramafic belt, located in the Sierra Grande de San Luis, Argentina. The units of this belt carry a base metal sulfide (BMS) mineralization and platinum group minerals (PGM). The macroscopic description of mafic and ultramafic rocks, as is usually done by the mining exploration companies, leads to an imprecise modal classification of the rocks. In this study, we develop a random forest-based prediction model, which uses geochemical parameters to classify mafic and ultramafic rocks intercepted by drill cores. This model showed an accuracy of between 86% and 94%, and an f1_score of 96%. Random forest classification is a widely adopted Machine Learning approach to construct predictive models across various research domains. However, as models become morecomplex, their interpretation can be considerably difficult. To interpret the model results, we use both global and local perspectives, incorporating the SHAP (SHapley Additive exPlanations) method. The SHAP technique allows us to analyze individual samples using force plots, and provides a measure of the importance of each geochemical input attribute in the model output. As a result of analyzing the contribution of each input feature to the model, the three variables with the highest contributions were identified in the following order: Al2O3,MgO, and Sr.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos(INGEOSUR)
Articulos de INST.GEOLOGICO DEL SUR
Articulos de INST.GEOLOGICO DEL SUR
Citación
Antonini, Antonella Soledad; Tanzola, Juan Emilio; Asiain, Lucia Montserrat; Ferracutti, Gabriela Roxana; Castro, Silvia Mabel; et al.; Machine learning model interpretability using SHAP values: application to igneous rock classification task; Elsevier; Applied Computing and Geosciences; 23; 22-7-2024; 1-9
Compartir
Altmétricas