Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Machine learning model interpretability using SHAP values: application to igneous rock classification task

Antonini, Antonella SoledadIcon ; Tanzola, Juan EmilioIcon ; Asiain, Lucia MontserratIcon ; Ferracutti, Gabriela RoxanaIcon ; Castro, Silvia Mabel; Bjerg, Ernesto AlfredoIcon ; Ganuza, María LujánIcon
Fecha de publicación: 22/07/2024
Editorial: Elsevier
Revista: Applied Computing and Geosciences
ISSN: 2590-1974
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

El Fierro intrusive body is one of the bodies that compose the La Jovita–Las Aguilas mafic-ultramafic belt, located in the Sierra Grande de San Luis, Argentina. The units of this belt carry a base metal sulfide (BMS) mineralization and platinum group minerals (PGM). The macroscopic description of mafic and ultramafic rocks, as is usually done by the mining exploration companies, leads to an imprecise modal classification of the rocks. In this study, we develop a random forest-based prediction model, which uses geochemical parameters to classify mafic and ultramafic rocks intercepted by drill cores. This model showed an accuracy of between 86% and 94%, and an f1_score of 96%. Random forest classification is a widely adopted Machine Learning approach to construct predictive models across various research domains. However, as models become morecomplex, their interpretation can be considerably difficult. To interpret the model results, we use both global and local perspectives, incorporating the SHAP (SHapley Additive exPlanations) method. The SHAP technique allows us to analyze individual samples using force plots, and provides a measure of the importance of each geochemical input attribute in the model output. As a result of analyzing the contribution of each input feature to the model, the three variables with the highest contributions were identified in the following order: Al2O3,MgO, and Sr.
Palabras clave: MAFIC-ULTRAMAFIC ROCKS , EXPLAINABLE ARTIFICIAL INTELLIGENCE , RANDOM FOREST CLASSIFICATION , SHAP VALUES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.316Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial 2.5 Unported (CC BY-NC 2.5)
Identificadores
URI: http://hdl.handle.net/11336/255278
URL: https://www.sciencedirect.com/science/article/pii/S2590197424000259
DOI: https://doi.org/10.1016/j.acags.2024.100178
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos(INGEOSUR)
Articulos de INST.GEOLOGICO DEL SUR
Citación
Antonini, Antonella Soledad; Tanzola, Juan Emilio; Asiain, Lucia Montserrat; Ferracutti, Gabriela Roxana; Castro, Silvia Mabel; et al.; Machine learning model interpretability using SHAP values: application to igneous rock classification task; Elsevier; Applied Computing and Geosciences; 23; 22-7-2024; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES