Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Diffusion Coefficients of Variable-Size Amphiphilic Additives in a Glass-Forming Polyethylene Matrix

Cammarata, María del MarIcon ; Contin, Mario DanielIcon ; Negri, Ricardo MartinIcon ; Factorovich, Matias HectorIcon
Fecha de publicación: 12/2023
Editorial: American Chemical Society
Revista: Journal of Physical Chemistry B
ISSN: 1520-6106
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Físico-Química, Ciencia de los Polímeros, Electroquímica

Resumen

Diffusion of additives in polymers is an important issue in the plastics industry since migratory-type molecules are widely used to tune the properties of polymeric composites. Predicting the diffusional behavior of new additives can minimize the need for repetitive experiments. This work presents molecular dynamics simulations at the microsecond time scale and uses the MARTINI force field to estimate self-diffusion coefficients, D, of six monounsaturated amides and their analogs carboxylic acids in polyethylene matrices (PE, MW = 5600 Da). The results are strongly influenced by the glass-forming properties of the PE matrix, which we characterize by three distinct temperatures. The metastability region (T < 325 K), the glass transition temperature (Tg = 256–260 K), and the end of the transition (T ≅ 200 K). Self-diffusion mechanisms are inferred from the results of the dependence of D on the molecular mass of the additive, observing a Rouse-like behavior at high temperatures and deviations from it within the metastability region of the matrix. Interestingly, D values are nonsensitive to the nature of the considered polar head for additives of similar size. The temperature-dependent behavior of D follows, at fixed additive size, a linear Arrhenius pattern at high temperatures and a super Arrhenius trend at lower temperatures, which is well represented with a power law equation as predicted by the Mode Coupling Theory (MCT). We offer a conceptual explanation for the observed super-Arrhenius behavior. This explanation draws on Truhlar and Kohen’s interpretation of the available energies at both the initial and the transition states along the diffusion pathway. The matrix’s mobility significantly affects solute self-diffusion, yielding equal activation enthalpies for the Arrhenius region or the same power law parameters for the super-Arrhenius regime. Finally, we establish a one-to-one time-equivalence of the self-diffusion processes between CG and all-atom systems for the largest additives and the PE matrix in the high-temperature regime.
Palabras clave: Additives , Molecules , Diffusion , Polymers
Ver el registro completo
 
Archivos asociados
Tamaño: 4.321Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/255224
URL: https://pubs.acs.org/doi/full/10.1021/acs.jpcb.3c04904
DOI: http://dx.doi.org/10.1021/acs.jpcb.3c04904
Colecciones
Articulos(INQUIMAE)
Articulos de INST.D/QUIM FIS D/L MATERIALES MEDIOAMB Y ENERGIA
Articulos(OCA HOUSSAY)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA HOUSSAY
Citación
Cammarata, María del Mar; Contin, Mario Daniel; Negri, Ricardo Martin; Factorovich, Matias Hector; Diffusion Coefficients of Variable-Size Amphiphilic Additives in a Glass-Forming Polyethylene Matrix; American Chemical Society; Journal of Physical Chemistry B; 128; 1; 12-2023; 312-328
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES