Artículo
Mapping and signaling of neural pathways involved in the regulation of hydromineral homeostasis
Antunes Rodrigues, J.; Ruginsk, S. G.; Mecawi, A. S.; Margatho, L. O.; Cruz, J. C.; Vilhena Franco, T.; Reis, W. L.; Ventura, R. R.; Reis, L. C.; Vivas, Laura Marta
; Elias, L. L. K.
Fecha de publicación:
04/2013
Editorial:
Associação Brasileira de Divulgação Científica
Revista:
Brazilian Journal Of Medical And Biological Research
ISSN:
1414-431X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Several forebrain and brainstem neurochemical circuitries interact with peripheral neural and humoral signals to collaboratively maintain both the volume and osmolality of extracellular fluids. Although much progress has been made over the past decades in the understanding of complex mechanisms underlying neuroendocrine control of hydromineral homeostasis, several issues still remain to be clarified. The use of techniques such as molecular biology, neuronal tracing, electrophysiology, immunohistochemistry, and microinfusions has significantly improved our ability to identify neuronal phenotypes and their signals, including those related to neuron-glia interactions. Accordingly, neurons have been shown to produce and release a large number of chemical mediators (neurotransmitters, neurohormones and neuromodulators) into the interstitial space, which include not only classic neurotransmitters, such as acetylcholine, amines (noradrenaline, serotonin) and amino acids (glutamate, GABA), but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide) and lipid-derived (endocannabinoids) mediators. This efferent response, initiated within the neuronal environment, recruits several peripheral effectors, such as hormones (glucocorticoids, angiotensin II, estrogen), which in turn modulate central nervous system responsiveness to systemic challenges. Therefore, in this review, we shall evaluate in an integrated manner the physiological control of body fluid homeostasis from the molecular aspects to the systemic and integrated responses.
Palabras clave:
Hypothalamus
,
Gaseous Neuromodulators
,
Neuropeptides
,
Endocannabinoids
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INIMEC - CONICET)
Articulos de INSTITUTO DE INV. MEDICAS MERCEDES Y MARTIN FERREYRA
Articulos de INSTITUTO DE INV. MEDICAS MERCEDES Y MARTIN FERREYRA
Citación
Antunes Rodrigues, J.; Ruginsk, S. G.; Mecawi, A. S.; Margatho, L. O.; Cruz, J. C.; et al.; Mapping and signaling of neural pathways involved in the regulation of hydromineral homeostasis; Associação Brasileira de Divulgação Científica; Brazilian Journal Of Medical And Biological Research; 46; 4; 4-2013; 1-12
Compartir
Altmétricas