Artículo
Effect of memristor’s potentiation-depression curves peculiarities in the convergence of physical perceptrons
Fecha de publicación:
08/2023
Editorial:
IOP Publishing
Revista:
Physica Scripta
ISSN:
0031-8949
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Neuromorphic computing aims to emulate the architecture and information processing mechanismsof the mammalian brain. This includes the implementation by hardware of neural networks. Oxide based memristor arrays with cross-bar architecture appear as a possible physical implementation ofneural networks. In this paper, we obtain experimental potentiation-depression (P-D) curves ondifferent manganite-based memristive systems and simulate the learning process of perceptrons forcharacter recognition. Weanalyze how the specific characteristics of the P-D curves affect theconvergence time -characterized by the EPOCHs-to-convergence (ETC) parameter- of the network.Our work shows that ETC is reduced for systems displaying P-D curves with relatively low granularityand non-linear and asymmetric response. In addition, we also show that noise injection during thesynaptic weight actualization further reduces the ETC. The results obtained here are expected tocontribute to the optimization of hardware neural networks based on memristors cross-bar arrays.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (UE-INN - NODO CONSTITUYENTES)
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO CONSTITUYENTES
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO CONSTITUYENTES
Citación
Quiñonez, Walter Javier; Sánchez, María José; Rubi, Diego; Effect of memristor’s potentiation-depression curves peculiarities in the convergence of physical perceptrons; IOP Publishing; Physica Scripta; 98; 9; 8-2023; 1-11
Compartir
Altmétricas