Artículo
Graded braided commutativity in Hochschild cohomology
Fecha de publicación:
10/2024
Editorial:
Mount Allison University
Revista:
Theory And Applications Of Categories
ISSN:
1201-561X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove the graded braided commutativity of the Hochschild cohomology of A with trivial coefficients, where A is a braided Hopf algebra in the category of Yetter-Drinfeld modules over the group algebra of an abelian group, under some finiteness conditions on a projective resolution of A as A-bimodule. This is a generalization of a result by Mastnak, Pevtsova, Schauenburg and Witherspoon to a context which includes Nichols algebras such as the Jordan and the super Jordan plane. We prove this result by constructing a coduoid-up-to-homotopy structure on the aforementioned projective resolution in the duoidal category of chain complexes of A-bimodules. We also prove that the Hochschild complex of a braided bialgebra A in an arbitrary braided monoidal category is a cocommutative comonoid up to homotopy with the deconcatenation product which induces the cup product in Hochschild cohomology.
Palabras clave:
Braiding
,
Hochschild
,
cohomology
,
product
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cóppola, Claudio Javier; Solotar, Andrea Leonor; Graded braided commutativity in Hochschild cohomology; Mount Allison University; Theory And Applications Of Categories; 41; 46; 10-2024; 1596-1643
Compartir