Mostrar el registro sencillo del ítem

dc.contributor.author
Perez Colo, Ivo  
dc.contributor.author
Saavedra Sueldo, Carolina  
dc.contributor.author
de Paula, Mariano  
dc.contributor.author
Acosta, Gerardo Gabriel  
dc.date.available
2025-02-20T10:22:24Z  
dc.date.issued
2023-07  
dc.identifier.citation
Perez Colo, Ivo; Saavedra Sueldo, Carolina; de Paula, Mariano; Acosta, Gerardo Gabriel; Intelligent approach for the industrialization of deep learning solutions applied to fault detection; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 233; 7-2023; 1-60  
dc.identifier.issn
0957-4174  
dc.identifier.uri
http://hdl.handle.net/11336/254921  
dc.description.abstract
Early fault detection, both in equipment and the products in process, is of paramount importance in industrial processes to ensure the quality of the final product, avoid abnormal operating conditions, expensive repairs, and even production process shutdown. The growing complexity of industrial systems and the increase in the amount of available data have encouraged the development of intelligent systems for automatic fault prediction/detection, mainly based on Industry 4.0 technologies and, particularly, those based on deep learning methodologies. However, the vast majority of proposals and research carried out to date define specific solutions for specific cases, which still requires a high level of expert knowledge for scaling the solutions to industrial environments. Actually, one of the major issues towards the industrialization of deep learning solutions is the determination of the optimal, or near-optimal, hyper-parameters. In this paper, we propose a low-level set-up effort intelligent failure detection system that integrates deep neural networks with a Bayesian Optimization algorithm for self-tuning of the system hyper-parameters. In addition, to facilitate the industrialization of the proposal and its incorporation into current industrial systems, we embedded the proposal in our previously formulated and tested Simulai architecture which allows for containing and interaction with multiple and heterogeneous technological components of manufacturing processes. Finally, our proposal is tested in two real cases of a different nature. The obtained results show a successful performance and demonstrate the easy online integration and interaction in a real production system.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL INTELLIGENCE  
dc.subject
DEEP NEURAL NETWORKS  
dc.subject
BAYESIAN OPTIMIZATION  
dc.subject
INDUSTRIALIZATION  
dc.subject
FAULT DETECTION  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Intelligent approach for the industrialization of deep learning solutions applied to fault detection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-27T09:29:43Z  
dc.journal.volume
233  
dc.journal.pagination
1-60  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Perez Colo, Ivo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires.; Argentina  
dc.description.fil
Fil: Saavedra Sueldo, Carolina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires.; Argentina  
dc.description.fil
Fil: de Paula, Mariano. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires.; Argentina  
dc.description.fil
Fil: Acosta, Gerardo Gabriel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires.; Argentina  
dc.journal.title
Expert Systems with Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417423014616  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.eswa.2023.120959