Mostrar el registro sencillo del ítem

dc.contributor.author
Chelotti, Jose Omar  
dc.contributor.author
Atashi, H.  
dc.contributor.author
Ferrero, Mariano  
dc.contributor.author
Grelet, C.  
dc.contributor.author
Soyeurt, H.  
dc.contributor.author
Giovanini, Leonardo Luis  
dc.contributor.author
Rufiner, Hugo Leonardo  
dc.contributor.author
Gengler, N.  
dc.date.available
2025-02-19T11:18:18Z  
dc.date.issued
2024-12  
dc.identifier.citation
Chelotti, Jose Omar; Atashi, H.; Ferrero, Mariano; Grelet, C.; Soyeurt, H.; et al.; Assessing traditional and machine learning methods to smooth and impute device-based body condition score throughout the lactation in dairy cows; Elsevier; Computers and Eletronics in Agriculture; 227; 12-2024; 1-12  
dc.identifier.issn
0168-1699  
dc.identifier.uri
http://hdl.handle.net/11336/254783  
dc.description.abstract
Regular monitoring of body condition score (BCS) changes during lactation is an essential management tool in dairy cattle; however, the current BCS measurements are often discontinuous and unevenly spaced in time. The imputation of BCS values is useful for two main reasons: i) achieving completeness of data is necessary to be able to relate BCS to other traits (e.g. milk yield and milk composition) that have been routinely recorded at different times and with a different frequency, and ii) having expected BCS values provides the possibility to trigger early warnings for animals with certain unexpected conditions. The contribution of this study was to propose and evaluate potential methods useful to smooth and impute device-based BCS values recorded during lactation in dairy cattle. In total, 26,207 BCS records were collected from 3,038 cows (9,199 and 14,462 BCS records on 1,546 Holstein and 1,211 Montbéliarde cows respectively, and the rest corresponded to other minority cattle breeds). Six methods were evaluated to predict BCS values: the traditional methods of test interval method (TIM), and multiple-trait procedure (MTP), and the machine learning (ML) methods of multi-layer perceptron (MLP), Elman network (Elman), long-short term memories (LSTM) and bi-directional LSTM (BiLSTM). The performance of each method was evaluated by a hold-out validation approach using statistics of the root mean squared error (RMSE) and Pearson correlation (r). TIM, MTP, MLP, and BiLSTM were assessed for the imputation of intermediate missing values, while MTP, Elman, and LSTM were evaluated for the forecasting of future BCS values. Regarding the machine learning methods, BiLSTM demonstrated the best performance for the intermediate value imputation task (RMSE = 0.295, r = 0.845), while LSTM demonstrated the best performance for the future value forecasting task (RMSE = 0.356, r = 0.751). Among the methods evaluated, MTP showed the best performance for imputation of intermediate missing values in terms of RMSE (0.288) and r (0.856). MTP also achieved the best performance for forecasting of future BCS values in terms of RMSE (0.348) and r (0.760). This study demonstrates the ability of MTP and machine learning methods to impute missing BCS data and provides a cost-effective solution for the application area.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
BODY CONDITION SCORE  
dc.subject
DATA IMPUTATION  
dc.subject
MACHINE LEARNING  
dc.subject
DAIRY COWS  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Producción Animal y Lechería  
dc.subject.classification
Producción Animal y Lechería  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Assessing traditional and machine learning methods to smooth and impute device-based body condition score throughout the lactation in dairy cows  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-02-12T15:40:12Z  
dc.journal.volume
227  
dc.journal.pagination
1-12  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Chelotti, Jose Omar. Université de Liège; Bélgica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Atashi, H.. Université de Liège; Bélgica  
dc.description.fil
Fil: Ferrero, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Grelet, C.. Walloon Agricultural Research Center; Bélgica  
dc.description.fil
Fil: Soyeurt, H.. Université de Liège; Bélgica  
dc.description.fil
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Gengler, N.. Université de Liège; Bélgica  
dc.journal.title
Computers and Eletronics in Agriculture  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0168169924009906  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compag.2024.109599