Mostrar el registro sencillo del ítem

dc.contributor.author
Aguirre Zapata, Estefanía  
dc.contributor.author
Alvarez, Hernan  
dc.contributor.author
Lema Perez, Laura  
dc.contributor.author
Di Sciascio, Fernando Agustín  
dc.contributor.author
Amicarelli, Adriana Natacha  
dc.date.available
2025-02-14T12:16:31Z  
dc.date.issued
2024-12  
dc.identifier.citation
Aguirre Zapata, Estefanía; Alvarez, Hernan; Lema Perez, Laura; Di Sciascio, Fernando Agustín; Amicarelli, Adriana Natacha; Interpretability in the modeling spectrum: A conceptual framework and a quantification index; Elsevier Science; Ecological Modelling; 498; 12-2024; 1-16  
dc.identifier.issn
0304-3800  
dc.identifier.uri
http://hdl.handle.net/11336/254408  
dc.description.abstract
This paper addresses the challenge of enhancing interpretability in the construction of mathematical models, which are essential for understanding and optimizing complex systems. The primary motivation lies in the need to establish a common conceptual framework across the modeling spectrum and to improve the interpretability of mathematical models, particularly in the context of first principles based semi-physical models (FPBSM). The importance of physical interpretation in models, especially within biotechnological or ecological processes, is highlighted, starting from the difficulty in establishing clear boundaries when searching for constitutive equations in such models, while maintaining a balance between fit accuracy and model interpretability. To meet this challenge, we propose a novel conceptual framework for addressing interpretability within the mathematical modeling spectrum and introduce a mathematical index for quantifying interpretability in FPBSM. Furthermore, the existing modeling methodology is extended by integrating interpretability as an additional criterion in determining the level of specification at which the search for constitutive equations should be stopped. The utility of the index and the proposed methodology is evaluated using a growth model of the grapevine moth (Lobesia botrana).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
INTERPRETABILITY INDEX  
dc.subject
FIRST PRINCIPLES BASED MODELS  
dc.subject
ECOLOGICAL PROCESSES  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Interpretability in the modeling spectrum: A conceptual framework and a quantification index  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-02-12T15:42:34Z  
dc.journal.volume
498  
dc.journal.pagination
1-16  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Aguirre Zapata, Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Alvarez, Hernan. Universidad Nacional de Colombia; Colombia  
dc.description.fil
Fil: Lema Perez, Laura. Norwegian University of Science and Technology; Noruega  
dc.description.fil
Fil: Di Sciascio, Fernando Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Amicarelli, Adriana Natacha. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.journal.title
Ecological Modelling  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0304380024002709  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecolmodel.2024.110882