Mostrar el registro sencillo del ítem

dc.contributor.author
Zachow, Maximilian  
dc.contributor.author
Kunstmann, Harald  
dc.contributor.author
Miralles, Daniel Julio  
dc.contributor.author
Asseng, Senthold  
dc.date.available
2025-02-14T12:16:13Z  
dc.date.issued
2024-07  
dc.identifier.citation
Zachow, Maximilian; Kunstmann, Harald; Miralles, Daniel Julio; Asseng, Senthold; Multi-model ensembles for regional and national wheat yield forecasts in Argentina; IOP Publishing; Environmental Research Letters; 19; 8; 7-2024; 1-13  
dc.identifier.issn
1748-9326  
dc.identifier.uri
http://hdl.handle.net/11336/254406  
dc.description.abstract
While multi-model ensembles (MMEs) of seasonal climate models (SCMs) have been used forcrop yield forecasting, there has not been a systematic attempt to select the most skillful SCMs tooptimize the performance of a MME and improve in-season yield forecasts. Here, we propose astatistical model to forecast regional and national wheat yield variability from 1993–2016 over themain wheat production area in Argentina. Monthly mean temperature and precipitation from thefour months (August–November) before harvest were used as features. The model was validatedfor end-of-season estimation in December using reanalysis data (ERA) from the European Centrefor Medium-Range Weather Forecasts (ECMWF) as well as for in-season forecasts from June toNovember using a MME of three SCMs from 10 SCMs analyzed. A benchmark model forend-of-season yield estimation using ERA data achieved a R2 of 0.33, a root-mean-square error(RMSE) of 9.8% and a receiver operating characteristic (ROC) score of 0.8 on national level. Onregional level, the model demonstrated the best estimation accuracy in the northern sub-humidPampas with a R2 of 0.5, a RMSE of 12.6% and a ROC score of 0.9. Across all months ofinitialization, SCMs from the National Centers for Environmental Prediction, the National Centerfor Atmospheric Research and the Geophysical Fluid Dynamics Laboratory had the highest meanabsolute error of forecasted features compared to ERA data. The most skillful in-season wheat yieldforecasts were possible with a 3-member-MME, combining data from the SCMs of the ECMWF,the National Aeronautics and Space Administration and the French national meteorologicalservice. This MME forecasted wheat yield on national level at the beginning of November, onemonth before harvest, with a R2 of 0.32, a RMSE of 9.9% and a ROC score of 0.7. This approachcan be applied to other crops and regions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
climate  
dc.subject
model  
dc.subject
forecast  
dc.subject
wheat  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Multi-model ensembles for regional and national wheat yield forecasts in Argentina  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-02-12T15:43:02Z  
dc.journal.volume
19  
dc.journal.number
8  
dc.journal.pagination
1-13  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Zachow, Maximilian. Universitat Technical Zu Munich; Alemania  
dc.description.fil
Fil: Kunstmann, Harald. Universitat Augsburg;  
dc.description.fil
Fil: Miralles, Daniel Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.description.fil
Fil: Asseng, Senthold. Universitat Technical Zu Munich; Alemania  
dc.journal.title
Environmental Research Letters  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1748-9326/ad627c  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1748-9326/ad627c