Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Integrating Social Relationships and Personality into MAS-Based Group Recommendations

Monteserin, Ariel JoséIcon ; Madsen, Daiana Elin; Godoy, Daniela LisIcon ; Schiaffino, Silvia NoemiIcon
Fecha de publicación: 12/2024
Editorial: MDPI
Revista: Big Data and Cognitive Computing
ISSN: 2504-2289
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Recommender systems aim to predict the preferences of users and suggest items of interest to them in various domains. While traditional recommendation techniques consider users as individuals, some approaches aim to satisfy the needs of a group of people. Multi-agent systems can be used to develop such recommendations, where multiple intelligent agents interact with each other to achieve a common goal, i.e., deciding which item to recommend. Particularly, negotiation techniques can be used to find a decision that aims at maximizing the satisfaction of all group members. The proposed approach introduces a multi-agent recommender system for a group of users by considering their personality traits, relationships and social interactions during the negotiation process that leads to the generation of recommendations. While traditional recommendation techniques do not take into account the effects of personality traits and relationships between individuals, our approach demonstrates that personality traits, especially personality types in the context of conflict management, and social relationships can significantly impact on the group recommendation. The results indicate that the opinion of an individual can be influenced when she is part of a group that cooperates towards a shared goal. Overall, the proposed approach shows that recommender systems can benefit from considering that factors. This work contributes to understanding the impact of personality traits and social relationships on group recommendations and suggests potential directions for future research.
Palabras clave: GROUP RECOMMENDER SYSTEMS , MULTI-AGENT SYSTEMS , NEGOTIATION , PERSONALITY TRAITS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.821Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/254373
URL: https://www.mdpi.com/2504-2289/9/1/1
DOI: http://dx.doi.org/10.3390/bdcc9010001
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Monteserin, Ariel José; Madsen, Daiana Elin; Godoy, Daniela Lis; Schiaffino, Silvia Noemi; Integrating Social Relationships and Personality into MAS-Based Group Recommendations; MDPI; Big Data and Cognitive Computing; 9; 1; 12-2024; 1-21
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES