Mostrar el registro sencillo del ítem

dc.contributor.author
de Leo, Mariano Fernando  
dc.contributor.author
Borgna, Juan Pablo  
dc.contributor.author
Huenchul, Cristian Hector  
dc.date.available
2025-02-13T11:36:21Z  
dc.date.issued
2025-02  
dc.identifier.citation
de Leo, Mariano Fernando; Borgna, Juan Pablo; Huenchul, Cristian Hector; Non trivial solutions for a system of coupled Ginzburg-Landau equations; Elsevier Science; Applied Numerical Mathematics; 208; 2-2025; 271-289  
dc.identifier.issn
0168-9274  
dc.identifier.uri
http://hdl.handle.net/11336/254226  
dc.description.abstract
This article addresses both the existence and properties of non-trivial solutions for a system of coupled Ginzburg-Landau equations derived from nematic-superconducting models. Its main goal is to provide a thorough numerical description of the region in the parameter space containing solutions that behave as a mixed (non trivial) nematic-superconducting state along with a rigorous proof for the existence of this region. More precisely, the rigorous approach establishes that the parameter space is divided into two regions with qualitatively different properties, according to the magnitude of the coupling constant: for small values (weak coupling), there is a unique non-trivial solution, and for large values (strong coupling), only trivial solutions exist. In addition, using a shooting method-based numerical approach, the profiles for the nematic and superconducting components of the non trivial solution are given, together with an algorithm computing the transition values representing the boundaries for the weak coupling region: from superconducting to mixed, and from mixed to nematic. Finally, numerical evidence is given for the existence of a third region, related to neither a small nor a strong coupling parameter (medium coupling) for which multiple non trivial solutions exist.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
GINZBURG-LANDAU EQUATION  
dc.subject
BIFURCATION  
dc.subject
THRESHOLDS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Non trivial solutions for a system of coupled Ginzburg-Landau equations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-06T09:45:56Z  
dc.journal.volume
208  
dc.journal.pagination
271-289  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: de Leo, Mariano Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Borgna, Juan Pablo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias Fisicas. - Universidad Nacional de San Martin. Instituto de Ciencias Fisicas.; Argentina  
dc.description.fil
Fil: Huenchul, Cristian Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.journal.title
Applied Numerical Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0168927424002770  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.apnum.2024.10.010