Artículo
Impulsive Noise Estimator With Minimization Methods (INEMM) on Software
Rabioglio, Lucas Andrés; Cebedio, Maria Celeste; Arnone, Leonardo Jose; de Micco, Luciana
; Castiñeira Moreira, Jorge


Fecha de publicación:
03/2024
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
IEEE Embedded Systems Letters
ISSN:
1943-0663
e-ISSN:
1943-0671
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper introduces the design of an estimator for parameters of Middleton Class A noise using its canonical formula and classical numerical methods. The main focus is to acquire parameters to characterize communication channels in intelligent systems or those based on cognitive paradigms. A comprehensive analysis of the first-order characteristics of the Middleton Class A noise model is conducted to establish the foundational understanding necessary for developing the presented estimator model, named Impulsive Noise Estimator with Minimization Methods (INEMM). Subsequently, the method is introduced, substantiated, and compared to various established estimators concerning precision and complexity. Results show a distinct advantage in terms of overall performance.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICYTE)
Articulos de INSTITUTO DE INVESTIGACIONES CIENTIFICAS Y TECNOLOGICAS EN ELECTRONICA
Articulos de INSTITUTO DE INVESTIGACIONES CIENTIFICAS Y TECNOLOGICAS EN ELECTRONICA
Citación
Rabioglio, Lucas Andrés; Cebedio, Maria Celeste; Arnone, Leonardo Jose; de Micco, Luciana; Castiñeira Moreira, Jorge; Impulsive Noise Estimator With Minimization Methods (INEMM) on Software; Institute of Electrical and Electronics Engineers; IEEE Embedded Systems Letters; 16; 3; 3-2024; 291-294
Compartir
Altmétricas