Mostrar el registro sencillo del ítem
dc.contributor.author
Vallese, Federico Danilo

dc.contributor.author
García Paoloni, María Soledad

dc.contributor.author
Springer, Valeria Haydee

dc.contributor.author
de Sousa Fernandes, David Douglas
dc.contributor.author
Goncalves Dias Diniz, Paulo Henrique

dc.contributor.author
Pistonesi, Marcelo Fabian

dc.date.available
2025-02-12T17:22:00Z
dc.date.issued
2023-12-15
dc.identifier.citation
Vallese, Federico Danilo; García Paoloni, María Soledad; Springer, Valeria Haydee; de Sousa Fernandes, David Douglas; Goncalves Dias Diniz, Paulo Henrique; et al.; Exploiting the successive projections algorithm to improve the quantification of chemical constituents and discrimination of botanical origin of Argentinean bee-pollen; Elsevier; Journal of Food Composition and Analysis; 126; 15-12-2023; 1-9
dc.identifier.issn
0889-1575
dc.identifier.uri
http://hdl.handle.net/11336/254184
dc.description.abstract
Bee-pollen as a functional food is gaining importance throughout the world because of its composition and biological properties. The protein content is one of the main parameters to determine its nutritional value, but it makes accurate labeling difficult due its high variability related to the botanical origin. Thus, this work employed near-infrared (NIR) spectroscopy and chemometrics to perform the quality control of Argentinean bee-pollen. Compared to full spectrum models, the successive projections algorithm (SPA) for selection of intervals or in- dividual variables always achieved the best results for quantitative and qualitative approaches. For moisture and total protein content determinations, SPA coupled with partial least squares (iSPA-PLS) and multiple linear regression (SPA-MLR) achieved relative errors of prediction (REP) of 3.53% and 3.93%, respectively. For the pollen classifications, in terms of total protein content (as a dietary supplement with a cut-off higher than 20 g/ 100 g) and botanical origin, discriminant analysis by iSPA-PLS-DA achieved the best predictive abilities, mis- classifying only one sample in the test set for both studies. The overall accuracies were 97.2% and 96.1%, respectively. Therefore, NIR spectroscopy combined with chemometrics can be used as an effective, fast, and low-cost tool for screening the quality of bee-pollen.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BEE-POLLEN PRODUCERS
dc.subject
CHEMICAL COMPOSITION
dc.subject
MULTIVARIATE CALIBRATION
dc.subject
PATTERN RECOGNITION
dc.subject
VARIABLE SELECTION
dc.subject
VIBRATIONAL SPECTROSCOPY
dc.subject.classification
Química Analítica

dc.subject.classification
Ciencias Químicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Exploiting the successive projections algorithm to improve the quantification of chemical constituents and discrimination of botanical origin of Argentinean bee-pollen
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-12-26T13:40:41Z
dc.journal.volume
126
dc.journal.pagination
1-9
dc.journal.pais
Estados Unidos

dc.journal.ciudad
New York
dc.description.fil
Fil: Vallese, Federico Danilo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: García Paoloni, María Soledad. Instituto Nacional de Tecnología Agropecuaria; Argentina
dc.description.fil
Fil: Springer, Valeria Haydee. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: de Sousa Fernandes, David Douglas. Universidade Estadual da Paraiba; Brasil
dc.description.fil
Fil: Goncalves Dias Diniz, Paulo Henrique. Universidade Federal do Oeste da Bahia; Brasil
dc.description.fil
Fil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.journal.title
Journal of Food Composition and Analysis

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0889157523007998?via%3Dihub
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jfca.2023.105925
Archivos asociados