Mostrar el registro sencillo del ítem

dc.contributor.author
Vallese, Federico Danilo  
dc.contributor.author
García Paoloni, María Soledad  
dc.contributor.author
Springer, Valeria Haydee  
dc.contributor.author
de Sousa Fernandes, David Douglas  
dc.contributor.author
Goncalves Dias Diniz, Paulo Henrique  
dc.contributor.author
Pistonesi, Marcelo Fabian  
dc.date.available
2025-02-12T17:22:00Z  
dc.date.issued
2023-12-15  
dc.identifier.citation
Vallese, Federico Danilo; García Paoloni, María Soledad; Springer, Valeria Haydee; de Sousa Fernandes, David Douglas; Goncalves Dias Diniz, Paulo Henrique; et al.; Exploiting the successive projections algorithm to improve the quantification of chemical constituents and discrimination of botanical origin of Argentinean bee-pollen; Elsevier; Journal of Food Composition and Analysis; 126; 15-12-2023; 1-9  
dc.identifier.issn
0889-1575  
dc.identifier.uri
http://hdl.handle.net/11336/254184  
dc.description.abstract
Bee-pollen as a functional food is gaining importance throughout the world because of its composition and biological properties. The protein content is one of the main parameters to determine its nutritional value, but it makes accurate labeling difficult due its high variability related to the botanical origin. Thus, this work employed near-infrared (NIR) spectroscopy and chemometrics to perform the quality control of Argentinean bee-pollen. Compared to full spectrum models, the successive projections algorithm (SPA) for selection of intervals or in- dividual variables always achieved the best results for quantitative and qualitative approaches. For moisture and total protein content determinations, SPA coupled with partial least squares (iSPA-PLS) and multiple linear regression (SPA-MLR) achieved relative errors of prediction (REP) of 3.53% and 3.93%, respectively. For the pollen classifications, in terms of total protein content (as a dietary supplement with a cut-off higher than 20 g/ 100 g) and botanical origin, discriminant analysis by iSPA-PLS-DA achieved the best predictive abilities, mis- classifying only one sample in the test set for both studies. The overall accuracies were 97.2% and 96.1%, respectively. Therefore, NIR spectroscopy combined with chemometrics can be used as an effective, fast, and low-cost tool for screening the quality of bee-pollen.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BEE-POLLEN PRODUCERS  
dc.subject
CHEMICAL COMPOSITION  
dc.subject
MULTIVARIATE CALIBRATION  
dc.subject
PATTERN RECOGNITION  
dc.subject
VARIABLE SELECTION  
dc.subject
VIBRATIONAL SPECTROSCOPY  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Exploiting the successive projections algorithm to improve the quantification of chemical constituents and discrimination of botanical origin of Argentinean bee-pollen  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-12-26T13:40:41Z  
dc.journal.volume
126  
dc.journal.pagination
1-9  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Vallese, Federico Danilo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: García Paoloni, María Soledad. Instituto Nacional de Tecnología Agropecuaria; Argentina  
dc.description.fil
Fil: Springer, Valeria Haydee. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: de Sousa Fernandes, David Douglas. Universidade Estadual da Paraiba; Brasil  
dc.description.fil
Fil: Goncalves Dias Diniz, Paulo Henrique. Universidade Federal do Oeste da Bahia; Brasil  
dc.description.fil
Fil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.journal.title
Journal of Food Composition and Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0889157523007998?via%3Dihub  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jfca.2023.105925