Mostrar el registro sencillo del ítem

dc.contributor.author
Reinoso, Deborath Mariana  
dc.contributor.author
de la Torre Gamarra, Carmen  
dc.contributor.author
Fernández Ropero, Antonio J.  
dc.contributor.author
Levenfeld, Belén  
dc.contributor.author
Várez, Alejandro  
dc.date.available
2025-02-12T17:19:36Z  
dc.date.issued
2024-02-06  
dc.identifier.citation
Reinoso, Deborath Mariana; de la Torre Gamarra, Carmen; Fernández Ropero, Antonio J.; Levenfeld, Belén; Várez, Alejandro; Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid; American Chemical Society; ACS Applied Energy Materials; 7; 6-2-2024; 1527-1538  
dc.identifier.issn
2574-0962  
dc.identifier.uri
http://hdl.handle.net/11336/254183  
dc.description.abstract
Despite the progress made in Li-ion battery components, technology still faces major challenges. Among them, the development of novel electrolytes with promising characteristics is required for next-generation energy storage devices. In this work, rigid hybrid electrolytes have been prepared by infiltration of an ionic liquid solution (Pyr14TFSI) with a lithium salt (LiTFSI) into a sintered LATP ion-conducting porous ceramic. The porous ceramic 3D network was obtained via solid-state sintering of LATP powders mixed with a small amount of corn starch as pore former. A synergetic effect between the ionic liquid and support was evidenced. The resultant quasi-solid-state hybrid electrolytes exhibit high ionic conductivity (∼10–3 S·cm–1 at 303 K), improved ion transfer number, tLi+, and a wide electrochemical window of 4.7–4.9 V vs Li+/Li. The LATP porosity plays a critical role in the free Li+ charge because it favors higher TFSI– confinement in the ceramic interfaces, which consequently positively influences tLi+ and ionic conductivity. Electrochemical tests conducted at room temperature for Li/LiFePO4 cells using the hybrid electrolyte exhibited a high capacity of 150 mAh·g–1LFP at C/30, and still retained 60 mAh·g–1 LFP at 1 C, while bare LATP does not perform well at low temperatures. These findings highlight this hybrid electrolyte as a superior alternative to the ceramic LATP electrolyte and a safer option compared with conventional organic electrolytes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HYBRID ELECTROLYTES  
dc.subject
IONIC LIQUID  
dc.subject
LI BATTERY  
dc.subject
POROUS CERAMIC SUPPORT  
dc.subject
QUASI-SOLID-STATE ELECTROLYTE  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-12-26T13:39:54Z  
dc.identifier.eissn
2574-0962  
dc.journal.volume
7  
dc.journal.pagination
1527-1538  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Reinoso, Deborath Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: de la Torre Gamarra, Carmen. Universidad Carlos III de Madrid. Instituto de Salud; España  
dc.description.fil
Fil: Fernández Ropero, Antonio J.. Universidad Carlos III de Madrid. Instituto de Salud; España  
dc.description.fil
Fil: Levenfeld, Belén. Universidad Carlos III de Madrid. Instituto de Salud; España  
dc.description.fil
Fil: Várez, Alejandro. Universidad Carlos III de Madrid. Instituto de Salud; España  
dc.journal.title
ACS Applied Energy Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsaem.3c02828  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acsaem.3c02828