Mostrar el registro sencillo del ítem
dc.date.available
2025-02-12T11:39:13Z
dc.identifier.citation
Biruk, Lucia Nadia; Guevara, Aranzazù; Gonzalez, Carina Veronica; Rovida Kojima, Elisa Akemi; Fernandez, Maria Elena; Giordano, Carla Valeria; (2025): Growth, biomass partitioning, leaf traits, stomatal traits and photoprotective/antioxidant compounds of four native desert woody plants under two different irrigation regimes. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/254112
dc.identifier.uri
http://hdl.handle.net/11336/254112
dc.description.abstract
We studied four woody species of the Monte Central desert: Bulnesia retama (Gillies ex Hook. & Arn.) Griseb., and three Neltuma spp. (ex Prosopis); Neltuma argentina Burkart, Neltuma flexuosa DC., and Neltuma alpataco Phil. We carried out a pot experiment with two levels of irrigation (high and low-water supply) in a glasshouse, where biomass production, stem growth, biomass allocation, total leaf area, leaf size, specific leaf area; stomata size, density and index; photoprotective and antioxidant compounds were measured.
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.title
Growth, biomass partitioning, leaf traits, stomatal traits and photoprotective/antioxidant compounds of four native desert woody plants under two different irrigation regimes
dc.type
dataset
dc.date.updated
2025-02-12T10:48:40Z
dc.description.fil
Fil: Biruk, Lucia Nadia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina
dc.description.fil
Fil: Guevara, Aranzazù. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
dc.description.fil
Fil: Gonzalez, Carina Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
dc.description.fil
Fil: Rovida Kojima, Elisa Akemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
dc.description.fil
Fil: Fernandez, Maria Elena. Instituto de Innovación Para la Producción Agropecuaria; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Giordano, Carla Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina
dc.rights.license
Datos sujetos al derecho de propiedad intelectual

dc.datacite.PublicationYear
2025
dc.datacite.Creator
Biruk, Lucia Nadia

dc.datacite.Creator
Guevara, Aranzazù

dc.datacite.Creator
Gonzalez, Carina Veronica

dc.datacite.Creator
Rovida Kojima, Elisa Akemi

dc.datacite.Creator
Fernandez, Maria Elena

dc.datacite.Creator
Giordano, Carla Valeria

dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas

dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza

dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza

dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales

dc.datacite.affiliation
Instituto de Innovación Para la Producción Agropecuaria
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas

dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas

dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas

dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas

dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas

dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas

dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas

dc.datacite.publisher
Consejo Nacional de Investigaciones Científicas y Técnicas
dc.datacite.subject
Ciencias de las Plantas, Botánica

dc.datacite.subject
Ciencias Biológicas

dc.datacite.subject
CIENCIAS NATURALES Y EXACTAS

dc.datacite.subject
Otras Ciencias Agrícolas

dc.datacite.subject
Otras Ciencias Agrícolas

dc.datacite.subject
CIENCIAS AGRÍCOLAS

dc.datacite.subject
Silvicultura

dc.datacite.subject
Agricultura, Silvicultura y Pesca

dc.datacite.subject
CIENCIAS AGRÍCOLAS

dc.datacite.ContributorType
DataCurator

dc.datacite.ContributorType
DataCollector

dc.datacite.ContributorType
DataCollector

dc.datacite.ContributorType
DataCollector

dc.datacite.ContributorType
DataCurator

dc.datacite.ContributorName
Debandi, Hugo Alejandro

dc.datacite.ContributorName
Frete, Juan Francisco

dc.datacite.ContributorName
Gazalez Vargas, Gabriela Jesús

dc.datacite.ContributorName
Zalazar, Gabriel Esteban

dc.datacite.ContributorName
Zalazar, Gualberto

dc.datacite.date
14/10/2014-10/02/2016
dc.datacite.DateType
Recolectado

dc.datacite.language
eng
dc.datacite.version
1.0
dc.datacite.description
We studied four woody species of the Monte Central: Bulnesia retama (Gillies ex Hook. & Arn.) Griseb., and three Neltuma spp. (ex Prosopis); Neltuma argentina Burkart, Neltuma flexuosa DC., and Neltuma alpataco Phil. We carried out a pot experiment with two levels of irrigation in a glasshouse at IADIZA, CONICET, Argentina (32º 52' S; 68º 49' W). The glasshouse has no temperature control and was used to exclude natural rainfall. We pooled all the seeds collected of each species, and randomly selected the ones that were sown in the experiment. The Neltuma spp. seeds were previously scarified with sandpaper. We sowed seeds in 5 L pots filled with 4.5 kg of commercial sand, a similar soil texture to that in the field (pH 8.03; electrical conductivity 1.91 dS m-1; total N 73 mg kg-1; N-NH4 36 mg kg-1; N-N03 12 mg kg-1; P-H2C03 2.3 mg kg-1, K 76 mg 1cg-1). We established two water treatments, low and high water availability (LW and HW). The LW treatment was to reflect the water stress situation to which plants are commonly subjected in the field, so we defined the relative water content of the substrate (RWC; % w/w) for this treatment on the basis of field records. During the frequent and prolonged periods of drought in the Monte Central, the soil RWC ranges from 0.5 to 2% (Guevara et al. 2018). In the field, we recorded leaf water potential values in N. flexuosa at midday around - 4.5 MPa (Giordano et al. 2011; Guevara et al. 2018), recording values up to more than - 10 MPa in B. retama (unpublished data) that exceeded the measuring capacity of the pressure chamber, so applying water stress to these species implies watering them extremely little. As we decided to work with a sandy substrate to replicate the field-like conditions as much as possible and knowing that this type of substrate has a dual behaviour in terms of water retention, sharply lowering its water potential when dry, we decided on the RWC ranges of the substrate for each treatment based on the water retention curve. As the equipment available in specialised soil laboratories only records up to - 2 MPa, we made the water retention curve by measuring the pre-dawn (PD) leaf water potential of small N. flexuosa seedlings growing in small pots in the same substrate as the experiment, subjected to increasing water stress, as detailed in Guevara and Giordano (2015). The PD leaf water potential of small seedlings in equilibrium with the substrate is an indicator of the water potential of the substrate. Based on the curve obtained, we decided to establish the two treatments as follows: LW: pots were watered to -4% RWC of the substrate and allowed to dry to -0.5%, corresponding to the exponential phase of the relationship between RWC and water potential (from approx. - 0.5 MPa to less than - 8 MPa); HW: pots were watered to -14% RWC of the substrate and allowed to dry to - 6% (fairly constant value of water potential, above - 0.5 MPa). As a result of this irrigation scheme, the RWC of the substrate of each treatment fluctuated. The LW treatment, based on the water retention curve of the substrate, would keep the plants in a fluctuation between no stress (immediately after the irrigation event) and increasing water stress (as the substrate dries out), whereas the HW treatment would keep the plants in a continuous situation of no stress. We watered the pots automatically with drippers and an irrigation controller, adjusting the watering time (i.e. total volume of water per irrigation event) and the interval between watering events according to the RWC of the substrate, which was monitored gravimetrically approximately twice a week. The time interval between irrigation events varied depending on the environmental conditions and plant growth. We started applying the water treatments on 14th October 2014, 30 days after planting. The experiment ended on I0th February 2016, spanning 484 days (1 year, 3 months, 27 days). Thirty plants of each species were placed in each treatment. Environmental conditions inside the glasshouse in summer (when these plants are actively growing) were mean daily temperature 29.1 (±0.1) ºC; maximum 46.4 (±0.1) ºC and minimum 11.8 (±0.1) ºC; mean RH 34.6 (± 0.1) %, maximum 93 .8 (± 0.1) % and minimum de 21.2 (±0.1) %, measured with a HOBO® data logger (HOS- 003-02, Onset Computer Corporation, Bourne, USA). These environmental conditions were similar to those at the Telteca Natural Reserve (IADIZA environmental web https://www.mendoza-conicet.gob.ar/ladyot/red_iadiza/ index.htm). Our own air temperature measurements in the field between January and February 2019 recorded 20 days with temperatures over 50 ºC, and 50 days with temperatures between 40 and 50 ºC (Biruk 2021). The photosynthetically active radiation at midday inside the glasshouse was 1244 µmol m-2 s-1• lt was measured with a Skye SKP 215 (400-700 nm) hemispherical sensor attached to the SpectroSense + 2 sensor (Skye Instruments Ltd, Powys, UK). The experiment followed a 2 X 4 factorial design, with water treatments (2 levels) and species ( 4 levels) as fixed factors. The experimental units (individual plants in a pot) were placed in the space systematically according to the restrictions imposed by the irrigation system, so that the treatments and species were distributed homogeneously and without spatial biases. Each experimental unit (individual plant) was assigned randomly to each treatment. Pre-dawn leaf water potential and Substrate relative water content: The water treatments applied were based on the water retention curve of the substrate, but the level of water stress experienced by each species may vary depending on its physiology. To get a measure of the water status of the plants, we measured the Pre-Dawn (PD) leaf water potential in 6 plants of each species and treatment in the summer of the second growing season (Dec 30, 2015). To do this, we covered the selected plants with black polyethylene bags to prevent transpiration, at the end of the photoperiod, and measured the leaf water potential PD with a pressure chamber (2.5 + 10 Model, Bio-Control, Buenos Aires, Argentina)- 2 h before dawn using one branch < 2 mm per plant (Scholander et al. 1965). We determine the relative water content of the substrate by gravietric method. Por total biomass {TB), we harvested 9 to 12 plants per treatment at the end of the experiment, and dried the roots, stems and leaves to a constant weight at 60 ºC, measured on a precision scale. The root collar diameter (RCD), a growth indicator that is easier to measure than biomass, was measured on all plants with a calliper. Biomass partitioning traits: Leaf mass ratio (LMR), stem mass ratio (SMR), root mass ratio (RMR) and root to shoot ratio (R:S) were calculated from the dry weights of different plant organs. Leaf traits: Neltuma spp. (ex Prosopis) have bipinnately compound leaves, with mostly two, and sometimes four pinnas (pri-mary division), with many pinnules (secondary divisions). Bulnesía retama has pinnately compound leaves, each with two to six pinnas. The leaves of Neltuma spp. close quickly if dried or handled (subfamily Mimosoideae), so it is very diffi.cult to measure them in an area folio-meter. So, we generated equations that would allow us to calculate the leaf surface area (LSA) using non-destructive and easily measured variables, such as length (L) or width (W) of pinnas (in the case of Neltuma spp.) or leaves (in the case of B. retama). To do this, we harvested about 100 expanded leaves of each species and calculated linear regressions between LSA, pinna or leaf L, and pinna or leaf W. The leaf surface area of the leaves used to make these regressions was measured in photographs using lmage J (v. l.51j8, National lnstitute of Health, Maryland, USA). We finally used pinna L to estímate P. argentina and P. alpataco LSA; and we used pinna or leaf W to estímate P. flexuosa and B. retama LSA, respectively. Leaf Mass Area (LMA) was calculated by measuring and weighing (after drying at 60 ºC until constant weight) a subset of expanded leaves from eight plants per species and treatment (three leaves/plant). For total plant Leaf Arca (LA), we added up the LSA of all the leaves in the plant. Leaf Area Ratio (LAR) was calculated as LA/TB. Stomata traits: For the determination of stomata size and frequency, we made epidermal prints of the middle portions of the pinnas (B. retama) or pinnules (Neltuma spp.), as described in (Giordano et al. 2011), and took photographs using an optical microscope coupled to a digital camera (DM500/ICC50HD, Leica Microsystems, Wetzlar, Germany) at lOOx magnification. Stomata and epidermal cells were counted in six 0.16 mm2 areas of the same leaf (three areas from the adaxial leaf surface and three areas from the abaxial leaf surface) and an average value was calculated per leaf from the six photographs. We measured 10 plants per species and treatment (3 leaves/plant). Photoprotective/antioxidant compounds: For Anthocyanins (AN) and Flavonoids (FLA) we measured 10 plants per species and treatment. We placed a single frozen leaf in a 10 mL of hydrogen chloride-methanol (HC1-CH30H) solution (1 % w/v) at - 18 ºC in darkness for 48 h. We read the absorbance of the extract at 280 and 520 nm in a UV-visible spectroradiometer (UV-vis Spectrum SP-2000; Shangai, China) for determination of the total FLA and AN content respectively, and expressed them per unit of LA (Mazza et al. 2000; González et al. 2016). Epicuticular Waxes (WAX) were measured in 10 plants per species and treatment. The waxes were removed by immersion of 6 frozen leaves in 1 mL of chloroform (CHCl3), followed by stirring (30 s). The chloroform was allowed to evaporate under a fume hood at room temperature. The amount of extracted WAX was calculated as the vial weight after wax extraction-empty vial weight, and expressed per unit of LA (Qaderi et al. 2002; Berli et al. 2013). Chlorophyll (CHL) and Carotenoids (CAR) content was measured in 5 plants of B. retama and P.argentina, and in 10 plants of N. flexuosa and N. alpataco, following Chapelle et al. (1992) with modifications. We placed 0.25--0.50 mg of frozen leaves in 10 mL of dimethyl sulfoxide (DMSO) at 90ºC in darkness for 75 min, and measured the absorbance of the extract at 665, 649 and 480 nm in a UV-visible spectroradiometer. The CHL and CAR concentration was calculated according to (Welburn 1994).
dc.datacite.DescriptionType
Métodos

dc.datacite.FundingReference
PICT 2011-2521
dc.datacite.FundingReference
22920160100042CO PUE0042
dc.datacite.FunderName
Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica

dc.datacite.FunderName
Consejo Nacional de Investigaciones Científicas y Técnicas

dc.relationtype.isSourceOf
11336/204843
dc.relationtype.isSourceOf
https://ri.conicet.gov.ar/handle/11336/245091
dc.relationtype.isSourceOf
https://bibliotecadigital.exactas.uba.ar/exa/collection/tesis/page/about
dc.subject.keyword
Phenotypic plasticity
dc.subject.keyword
Drylands
dc.subject.keyword
Neltuma
dc.subject.keyword
Bulnesia
dc.subject.keyword
Monte Central
dc.datacite.resourceTypeGeneral
dataset
dc.conicet.datoinvestigacionid
24109
dc.datacite.awardTitle
Estudios fisiológicos y arquitecturales de raíz y vástago de especies leñosas nativas para la revegetación de ecosistemas áridos
dc.datacite.awardTitle
Biodiversidad en sistemas socioecológicos de tierras secas: estado, conservación y manejo en un contexto de cambio global
dc.datacite.geolocation
CCT CONICET Mendoza: -32.89414549083249, -68.87386496847454
dc.datacite.formatedDate
2014-2016
Archivos del conjunto de datos
Archivo
Notas de uso
Tamaño
Photoprotective_antioxidant_compounds.csv
Más
3.713Kb
Stomatal_traits.csv
Más
5.716Kb
Root_Collar_Diameter.csv
Más
7.375Kb
Water_potential_and_soil_water_content.csv
Más
1.049Kb
Biomass_and_leaf_traits.csv
Más
6.290Kb