Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Fully adaptive time-varying wave-shape model: Applications in biomedical signal processing

Ruiz, Joaquin VictorioIcon ; Schlotthauer, GastonIcon ; Vignolo, Leandro DanielIcon ; Colominas, Marcelo AlejandroIcon
Fecha de publicación: 01/2024
Editorial: Elsevier Science
Revista: Signal Processing
ISSN: 0165-1684
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

In this work, we propose a time-varying wave-shape extraction algorithm based on a modified version of the adaptive non-harmonic model for non-stationary signals. The model codifies the time-varying wave-shape information in the relative amplitude and phase of the harmonic components of the wave-shape. The algorithm was validated on both real and synthetic signals for the tasks of denoising, decomposition, and adaptive segmentation. For the denoising task, both monocomponent and multicomponent synthetic signals were considered. In both cases, the proposed algorithm can accurately recover the time-varying wave-shape of non-stationary signals, even in the presence of high levels of noise, outperforming existing wave-shape estimation algorithms and denoising methods based on short-time Fourier transform thresholding. The denoising of an electroencephalograph signal was also performed, giving similar results. For decomposition, our proposal was able to recover the composing waveforms more accurately by considering the time variations from the harmonic amplitude functions when compared to existing methods. Finally, the algorithm was used for the adaptive segmentation of synthetic signals and an electrocardiograph of a patient undergoing ventricular fibrillation.
Palabras clave: BIOMEDICAL SIGNAL PROCESSING , OSCILLATORY SIGNAL MODELING , SIGNAL DECOMPOSITION , SIGNAL DENOISING , SIGNAL SEGMENTATION , TIME-VARYING WAVE-SHAPE FUNCTION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.801Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/254020
URL: https://www.sciencedirect.com/science/article/abs/pii/S0165168423003328
DOI: http://dx.doi.org/10.1016/j.sigpro.2023.109258
Colecciones
Articulos (IBB)
Articulos de INSTITUTO DE INVESTIGACION Y DESARROLLO EN BIOINGENIERIA Y BIOINFORMATICA
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Ruiz, Joaquin Victorio; Schlotthauer, Gaston; Vignolo, Leandro Daniel; Colominas, Marcelo Alejandro; Fully adaptive time-varying wave-shape model: Applications in biomedical signal processing; Elsevier Science; Signal Processing; 214; 1-2024; 1-12
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Artículo Retroactive Signaling in Short Signaling Pathways
    Sepulchre, Jacques Alexandre; Merajver, Sofia D.; Ventura, Alejandra (Public Library of Science, 2012-07)
  • Artículo An improved signal-conservative approach to cope with Rayleigh and Raman signals in fluorescence landscapes
    Chiappini, Fabricio Alejandro ; Alcaraz, Mirta Raquel ; Goicoechea, Hector Casimiro (Elsevier Science, 2019)
  • Artículo Activation of Signaling Lymphocytic Activation Molecule triggers a signaling cascade that enhances Th1 responses in human intracellular infection
    Quiroga, María F.; Martínez, Gustavo J.; Pasquinelli, Virginia ; Costas, Monica Alejandra ; Bracco, María Marta; Malbrán, Alejandro; Olivares, Maria Liliana; Sieling, Peter A.; García, Verónica E. (American Association of Immunologists, 2004-09)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES