Mostrar el registro sencillo del ítem
dc.contributor.author
Balbi, María del Pilar
dc.contributor.author
Fleite, Santiago Nicolás
dc.contributor.author
Cassanello Fernandez, Miryam Celeste
dc.date.available
2025-02-11T15:43:16Z
dc.date.issued
2024-03
dc.identifier.citation
Balbi, María del Pilar; Fleite, Santiago Nicolás; Cassanello Fernandez, Miryam Celeste; CFD-aided contraction-expansion static mixer design for oil-in-water emulsification; De Gruyter; Chemical Product and Process Modeling; 19; 2; 3-2024; 275-284
dc.identifier.issn
1934-2659
dc.identifier.uri
http://hdl.handle.net/11336/254019
dc.description.abstract
Contraction-expansion (CE) static mixers can enable solid-liquid and liquid-liquid dispersion with low energy dissipation, low risk of obstruction, and without moving parts. In this work, the influence of CE elements of different geometries on the imposed turbulence of a flowing liquid has been assessed by a two-dimensional computational fluid dynamic (2D-CFD) simulation. The effect of CE on the dispersion of droplets of an immiscible liquid has also been analysed from simulations, using the volume of fluid (VOF) approach. Direct numerical simulation (DNS) performed by the open-source Gerris Flow Solver software was used to get the velocity fields and turbulence characteristics. Different ratios of CE diameters and lengths were analysed for liquid Reynoldsnumbers from 500 to 20,000. From simulations, the CE geometry that maximised the average root mean square velocity, as an indicator of turbulence, was determined for different liquid flow rates. It was found that the average RMS had a maximum for a wide range of liquid flow rates when the CE diameter ratio was between 0.55 and 0.59 and the length ratio was between 0.2 and 0.3. Then, a device with seven CE elements with geometrical features within this range was built and used for preparing an oil-in-water emulsion. The test system contained water and sunflower oil (5 % v/v) with the further addition of TritonX100 (0.5 % in volume of the solution) as surfactant. The stability of the emulsions was assessed by measuring the time evolution of turbidity (absorbance at 860 nm), to get the initial separation velocities. The emulsions prepared using the CE device showed initial phase separation rates lower than the one obtained in a stirred flask, evidencing the feasibility of using CE static mixers for preparing emulsions with relatively low energy consumption. Moreover, the emulsions obtained with the CE device, although dependent on the flow rate, showed similar features when obtained with 10, 100 and 250 passes through the CE static mixer.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
De Gruyter
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
emulsions
dc.subject
static mixer
dc.subject
contraction-expansion
dc.subject
CFD optimization
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
CFD-aided contraction-expansion static mixer design for oil-in-water emulsification
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-02-11T14:48:35Z
dc.journal.volume
19
dc.journal.number
2
dc.journal.pagination
275-284
dc.journal.pais
Alemania
dc.description.fil
Fil: Balbi, María del Pilar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Cátedra de Química Analítica; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; Argentina
dc.description.fil
Fil: Fleite, Santiago Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; Argentina
dc.description.fil
Fil: Cassanello Fernandez, Miryam Celeste. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; Argentina
dc.journal.title
Chemical Product and Process Modeling
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/cppm-2023-0069/html
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/cppm-2023-0069
Archivos asociados