Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Symmetric and asymmetric Gaussian weighted linear prediction for voice inverse filtering

Zalazar, Ivan ArielIcon ; Alzamendi, Gabriel AlejandroIcon ; Schlotthauer, GastonIcon
Fecha de publicación: 04/2024
Editorial: Elsevier Science
Revista: Speech Communication
ISSN: 0167-6393
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Weighted linear prediction (WLP) has demonstrated its significance in voice inverse filtering, contributing to enhanced methods for estimating both the vocal tract filter and the glottal source. WLP provides a mechanism to mitigate the effect on the linear prediction model of voice samples that affects the vocal tract filter estimation, particularly those samples around glottal closure instants (GCIs). This article studies the Gaussian weighted linear prediction (GLP) strategy, which employs a Gaussian attenuation window centered at the GCIs to reduce its contribution in the WLP analysis. In this study, the Gaussian attenuation is revisited and a parameterization of the window that adjusts to the typical variability in voice periodicity is introduced. In addition, an asymmetric Gaussian window is proposed to diminish the relevance of voice samples preceding GCIs on the WLP model, thus providing a quasi closed phase inverse filtering method. Characterization of symmetric and asymmetric GLP methods for glottal source estimation is addressed based on synthetic and natural phonation data, resulting in a set of optimal parameters for the Gaussian attenuation windows. The results show that the proposed asymmetric attenuation improves voice inverse filtering with respect to the symmetric GLP method. Comparisons with other state-of-the-art techniques suggest that the proposed GLP approaches are competitive, falling slightly short in performance only when contrasted with the well-known quasi closed inverse filtering analysis. The simplicity of implementing the attenuation windows, coupled with their robust performance, positions the proposed GLP methods as two attractive and straightforward voice inverse filtering techniques for practical application.
Palabras clave: Voice inverse filtering, Glottal source estimation , Weighted linear prediction , Gaussian attenuation window , Quasi closed phase analysis
Ver el registro completo
 
Archivos asociados
Tamaño: 1.243Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/254018
URL: https://linkinghub.elsevier.com/retrieve/pii/S0167639324000293
DOI: http://dx.doi.org/10.1016/j.specom.2024.103057
Colecciones
Articulos (IBB)
Articulos de INSTITUTO DE INVESTIGACION Y DESARROLLO EN BIOINGENIERIA Y BIOINFORMATICA
Citación
Zalazar, Ivan Ariel; Alzamendi, Gabriel Alejandro; Schlotthauer, Gaston; Symmetric and asymmetric Gaussian weighted linear prediction for voice inverse filtering; Elsevier Science; Speech Communication; 159; 4-2024; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES