Artículo
Optimal Resource Allocation for Detection of a Gaussian Process Using a MAC in WSNs
Fecha de publicación:
04/2015
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
IEEE Transactions On Signal Processing
ISSN:
1053-587X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We analyze a binary hypothesis testing problem built on a wireless sensor network (WSN) for detecting a stationary random process distributed both in space and time with a circularly-symmetric complex Gaussian distribution under the Neyman-Pearson (NP) framework. Using an analog scheme, the sensors transmit different linear combinations of their measurements through a multiple access channel (MAC) to reach the fusion center (FC), whose task is to decide whether the process is present or not. Considering an energy constraint on each node transmission and a limited amount of channel uses, we compute the miss error exponent of the proposed scheme using Large Deviation Theory (LDT) and show that the proposed strategy is asymptotically optimal (when the number of sensors approaches infinity) among linear orthogonal schemes. We also show that the proposed scheme obtains meaningful energy saving in the low signal-to-noise ratio regime, which is the typical scenario of WSNs. Finally, a Monte Carlo simulation of a 2-dimensional process in space validates the analytical results.
Palabras clave:
DISTRIBUTED DETECTION
,
MAC
,
ENERGY
,
BANDWIDTH
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CSC)
Articulos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Articulos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Citación
Maya, Juan Augusto; Rey Vega, Leonardo Javier; Galarza, Cecilia Gabriela; Optimal Resource Allocation for Detection of a Gaussian Process Using a MAC in WSNs; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 63; 8; 4-2015; 2057-2069
Compartir
Altmétricas