Mostrar el registro sencillo del ítem

dc.contributor.author
Cafaro, Diego Carlos  
dc.contributor.author
Cerda, Jaime  
dc.date.available
2017-09-28T20:00:02Z  
dc.date.issued
2008-12  
dc.identifier.citation
Cafaro, Diego Carlos; Cerda, Jaime; Dynamic Scheduling of Multiproduct Pipelines with Multiple Delivery Due Dates; Elsevier; Computers and Chemical Engineering; 32; 4-5; 12-2008; 728-753  
dc.identifier.issn
0098-1354  
dc.identifier.uri
http://hdl.handle.net/11336/25375  
dc.description.abstract
Scheduling product batches in pipelines is a very complex task with many constraints to be considered. Several papers have been published on the subject during the last decade. Most of them are based on large-size MILP discrete time scheduling models whose computational efficiency greatly diminishes for rather long time horizons. Recently, anMILPcontinuous problem representation in both time and volume providing better schedules at much lower computational cost has been published.However, all model-based scheduling techniques were applied to examples assuming a static market environment, a short single-period time horizon and a unique due-date for all deliveries at the horizon end. In contrast, pipeline operators generally use a monthly planning horizon divided into a number of equal-length periods and a cyclic scheduling strategy to fulfill terminal demands at period ends. Moreover, the rerouting of shipments and time-dependent product requirements at distribution terminals force the scheduler to continuously update pipeline operations. To address such big challenges facing the pipeline industry, thiswork presents an efficient MILP continuous-time framework for the dynamic scheduling of pipelines over a multiperiod moving horizon. At the completion time of the current period, the planning horizon moves forward and the re-scheduling process based on updated problem data is triggered again over the newhorizon. Pumping runs may extend over two or more periods and a different sequence of batches may be injected at each one. The approach has successfully solved a real-world pipeline scheduling problem involving the transportation of four products to five destinations over a rolling horizon always comprising four 1-week periods.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Multiproduct Pipelines  
dc.subject
Dynamic Scheduling  
dc.subject
Multiple Delivery Due Dates  
dc.subject
Rolling Horizon  
dc.subject
Optimization Approach  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Dynamic Scheduling of Multiproduct Pipelines with Multiple Delivery Due Dates  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-09-25T18:20:57Z  
dc.journal.volume
32  
dc.journal.number
4-5  
dc.journal.pagination
728-753  
dc.journal.pais
Irlanda  
dc.description.fil
Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.journal.title
Computers and Chemical Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compchemeng.2007.03.002  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135407000592