Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A combined approach to identify isolated theropod teeth from the Cenomanian Kem Kem Group of Morocco: cladistic, discriminant, and machine learning analyses

Hendrickx, Christophe Marie FabianIcon ; Trapman, Thomas H.; Wills, Simon; Holwerda, Femke Marleen; Stein, Koen H. W.; Rauhut, Oliver Walter Mischa; Melzer, Roland R.; Woensel, Jeroen VAN; Reumer, Jelle W. F.
Fecha de publicación: 03/2024
Editorial: Society of Vertebrate Paleontology
Revista: Journal of Vertebrate Paleontology
ISSN: 0272-4634
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Paleontología

Resumen

The Kem Kem Group of Southeastern Morocco, North Africa, is well known for theropod remains, especially isolated teeth. Here, a collection of isolated theropod teeth is assessed for diversity using a combination of linear discriminant, phylogenetic, and machine learning analyses for the first time. The results confirm earlier studies on Kem Kem theropod diversity, with teeth referred to Abelisauridae, Spinosaurinae, and Carcharodontosauridae. A single tooth is ascribed to a non-abelisauroid ceratosaur or a megaraptoran and may represent the enigmatic averostran Deltadromeus. Spinosaurine teeth are clearly differentiated by all three methodologies, whereas abelisaurid and carcharodontosaurid teeth could only be distinguished by the machine learning and phylogenetic analyses. This study shows that a combination of independent methods is most effective at providing strong evidence on theropod dental diversity in a particular assemblage, and that cladistic and machine learning analyses are the most reliable approaches to identify isolated dinosaur teeth. The methodology used here is likely to yield results in other dinosaur assemblages where isolated teeth are more abundant than body fossils.
Palabras clave: Theropoda , Teeth , Identification , Machine Learnin
Ver el registro completo
 
Archivos asociados
Tamaño: 7.721Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/253477
URL: https://www.tandfonline.com/doi/full/10.1080/02724634.2024.2311791
DOI: http://dx.doi.org/10.1080/02724634.2024.2311791
Colecciones
Articulos(UEL)
Articulos de UNIDAD EJECUTORA LILLO
Citación
Hendrickx, Christophe Marie Fabian; Trapman, Thomas H.; Wills, Simon; Holwerda, Femke Marleen; Stein, Koen H. W.; et al.; A combined approach to identify isolated theropod teeth from the Cenomanian Kem Kem Group of Morocco: cladistic, discriminant, and machine learning analyses; Society of Vertebrate Paleontology; Journal of Vertebrate Paleontology; 43; 4; 3-2024; 1-23
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES