Artículo
Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation
Fecha de publicación:
09/2008
Editorial:
De gruyter
Revista:
International Journal of Chemical Reactor Engineering
ISSN:
1542-6580
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Kinetic studies of the catalytic hydrogenation of vegetable oils and fatty acid methyl esters in liquid-phase are commonly performed in the framework of the Langmuir-Hinshelwood-Hougen-Watson (LHHW) formalism using the competitive and non-competitive adsorption models, which are certainly extreme. Based on the advanced concepts of multicentered adsorption and semi-competitive adsorption, mechanistic kinetic models including a distinction between occupiedsites and covered-sites by the large molecules of FAMEs were formulated without expressing an opinion a priori on whether the adsorption regime is competitive or non- competitive. The theoretical basis of the advanced kinetic modeling is described and successfully applied to three application examples of increasing complexity, including: (a) the hydrogenation of methyl oleate without cis-trans isomerization distinction, (b) the cis-trans isomerization and hydrogenation of the methyl oleate, and (c) the methyl linoleate hydrogenation including the cis-trans isomerization of the methyl oleate. The kinetic studies were carried out using a Ni/-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.-Al2O3, at 398, 413, 428 and 443 K, under isobaric conditions at hydrogen pressures of 370, 510, and 650 kPa, in the absence of mass-transport limitation. After model discrimination based on statistical analysis and taking into account the physical meaning of the estimated parameters, semi-competitive adsorption models were found to be more realistic than the classical LHHW competitive and non-competitive ones, mainly because they give additional information indicating that the adsorbed molecules of methyl linoleate and methyl oleate could cover up to 12 and 7 surface sites, respectively. These values are in adequate agreement with those expected from a rough computational simulation and seem to be the most interesting result, since they are factual and unattainable from the classical LHHW approaches.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Cabrera, Maria Ines; Grau, Ricardo José Antonio; Advanced Concepts for the Kinetic Modeling of Fatty Acid Methyl Esters Hydrogenation; De gruyter; International Journal of Chemical Reactor Engineering; 6; 1; 9-2008; 70-111
Compartir
Altmétricas