Mostrar el registro sencillo del ítem

dc.contributor.author
Plotek, Berenice Lia  
dc.contributor.author
Likerman, Jeremias  
dc.contributor.author
Cristallini, Ernesto Osvaldo  
dc.date.available
2025-01-29T11:02:21Z  
dc.date.issued
2024  
dc.identifier.citation
Influence of viscosity and fault angle on the kinematics and geometry of fault-propagation folds: A numerical-mechanical approach; Geological Society of America 2024 Annual Meeting; Pensylvannia; Estados Unidos; 2024; 1-2  
dc.identifier.uri
http://hdl.handle.net/11336/253256  
dc.description.abstract
The kinematic trishear model is used to explain the kinematics and geometry of fault-propagation folds. This model proposes a triangular deformation zone from the main fault termination. The apical angle is crucial for accurate reconstructions, as it defines where deformation concentrates in the frontal limb. However, studies show that this angle can vary significantly, influenced by rheology.This study evaluates how the viscosity of rock layers affects the kinematics of fault-propagation folds and how these deviates from the trishear model's vector field. Fault-propagation fold models with a single ramp were developed using particle-in-cell finite element software, Underworld2. The geometry and kinematic field were analyzed and compared to the theoretical model, quantifying variations based on upper layer viscosity (from 1x1020 Pa·s to 1x1022 Pa·s), which covers values typical of the upper crust. The angle of the reverse fault was varied from 15° to 45°.Results indicate that viscosity impacts the deformation style and velocity field. Higher viscosity results in a smaller apical angle, concentrating deformation in a narrower sector. Less viscous materials produce a wider deformation sector. Lower viscosity simulations show a localized high velocity in the frontal area, interpreted as material flowing from the hinge zone to the hanging wall, similar to fault-bend folds. Conversely, simulations with highest viscosity (1x1022 Pa·s ) exhibit a kinematic field more consistent with the trishear model.Regarding the influence of fault angles, a low viscosity zone (LVZ) was detected in models with low-angle thrusts. This zone acts as the main fault, governing the kinematic field evolution more than the imposed fault ramp. To analyze this, triaxial tests simulations were conducted, varying the confining pressure (from 5 to 17.5 km) to simulate different burial depths. Fault angles were measured, and the stress tensor was calculated, obtaining normal and shear stress for each faulting cylinder. The intact basement rock envelope approximated the Mohr-Coulomb criterion. The behavior of low cohesion rocks, similar to areas with pre-existing faults, was examined. Results showed that when the ramp angle is less than 23°, the pre-existing weakness zone does not reactivate. Instead, a new fault forms at an angle of 34°, coinciding with the location of the LVZ (33° in simulations).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Geological Society of America  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Trishear  
dc.subject
Numerical model  
dc.subject
Folds  
dc.subject
Fault-propagation  
dc.subject.classification
Geología  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Influence of viscosity and fault angle on the kinematics and geometry of fault-propagation folds: A numerical-mechanical approach  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2024-11-26T14:40:06Z  
dc.journal.volume
56  
dc.journal.number
5  
dc.journal.pagination
1-2  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Pensylvannia  
dc.description.fil
Fil: Plotek, Berenice Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina  
dc.description.fil
Fil: Likerman, Jeremias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina  
dc.description.fil
Fil: Cristallini, Ernesto Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://gsa.confex.com/gsa/2024AM/meetingapp.cgi/Paper/402597  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1130/abs/2024AM-402597  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Congreso  
dc.description.nombreEvento
Geological Society of America 2024 Annual Meeting  
dc.date.evento
2024-09-22  
dc.description.ciudadEvento
Pensylvannia  
dc.description.paisEvento
Estados Unidos  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Geological Society of America  
dc.source.libro
Geological Society of America Annual Meeting  
dc.date.eventoHasta
2024-09-25  
dc.type
Congreso