Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Libro

Neuro Symbolic Reasoning and Learning

Shakarian, Paulo; Baral, Chitta; Simari, GerardoIcon ; Xi, Bowen; Pokala, Lahari
Fecha de publicación: 2023
Editorial: Springer Nature Switzerland AG
ISSN: 2191-5768
e-ISSN: 2191-5776
ISBN: 978-3-031-39178-1
Idioma: Inglés
Clasificación temática:
Ciencias de la Computación

Resumen

This book provides a broad overview of the key results and frameworks for various NSAI tasks as well as discussing important application areas. This book also covers neuro symbolic reasoning frameworks such as LNN, LTN, and NeurASP and learning frameworks. This would include differential inductive logic programming, constraint learning and deep symbolic policy learning. Additionally, application areas such a visual question answering and natural language processing are discussed as well as topics such as verification of neural networks and symbol grounding. Detailed algorithmic descriptions, example logic programs, and an online supplement that includes instructional videos and slides provide thorough but concise coverage of this important area of AI. Neuro symbolic artificial intelligence (NSAI) encompasses the combination of deep neural networks with symbolic logic for reasoning and learning tasks. NSAI frameworks are now capable of embedding priorknowledge in deep learning architectures, guiding the learning process with logical constraints, providing symbolic explainability, and using gradient-based approaches to learn logical statements. Several approaches are seeing usage in various application areas. This book is designed for researchers and advanced-level students trying to understand the current landscape of NSAI research as well as those looking to apply NSAI research in areas such as natural language processing and visual question answering. Practitioners who specialize in employing machine learning and AI systems for operational use will find this book useful as well.
Palabras clave: Artificial intelligence , Machine Learning , Deep Learning , Fuzzy Logic , Neural networks
Ver el registro completo
 
Archivos asociados
Tamaño: 3.604Mb
Formato: PDF
.
 
Licencia
info:eu-repo/semantics/closedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/252952
URL: https://link.springer.com/book/10.1007/978-3-031-39179-8
Colecciones
Libros(CCT - BAHIA BLANCA)
Libros de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Shakarian, Paulo; Baral, Chitta; Simari, Gerardo; Xi, Bowen; Pokala, Lahari; Neuro Symbolic Reasoning and Learning; Springer Nature Switzerland AG; 2023; 125
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES