Artículo
Quantum reservoir complexity by the Krylov evolution approach
Domingo, Laia; Borondo, F.; Scialchi, Gastón Federico
; Roncaglia, Augusto Jose
; Carlo, Gabriel Gustavo
; Wisniacki, Diego Ariel
; Roncaglia, Augusto Jose
; Carlo, Gabriel Gustavo
; Wisniacki, Diego Ariel
Fecha de publicación:
08/2024
Editorial:
American Physical Society.
Revista:
Physical Review A
ISSN:
2469-9934
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Quantum reservoir computing algorithms recently emerged as a standout approach in the development of successful methods for the noisy intermediate-scale quantum (NISQ) era because of its superb performance and compatibility with current quantum devices. By harnessing the properties and dynamics of a quantum system, quantum reservoir computing effectively uncovers hidden patterns in data. However, the design of the quantum reservoir is crucial to this end in order to ensure an optimal performance of the algorithm. In this work, we introduce a precise quantitative method with strong physical foundations based on the Krylov evolution to assess the wanted good performance in machine-learning tasks. Our results show that the Krylov approach to complexity strongly correlates with quantum reservoir performance, making it a powerful tool in the quest for optimally designed quantum reservoirs, which will pave the road to the implementation of successful quantum machine-learning methods.
Palabras clave:
Majorization
,
Quantum Reservoir computing
,
Krylov
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Domingo, Laia; Borondo, F.; Scialchi, Gastón Federico; Roncaglia, Augusto Jose; Carlo, Gabriel Gustavo; et al.; Quantum reservoir complexity by the Krylov evolution approach; American Physical Society. ; Physical Review A; 110; 2; 8-2024; 1-12
Compartir
Altmétricas