Mostrar el registro sencillo del ítem

dc.contributor.author
Gaia Amorós, Jeremías  
dc.contributor.author
Orosco, Eugenio Conrado  
dc.contributor.author
Rossomando, Francisco Guido  
dc.contributor.author
Soria, Carlos Miguel  
dc.date.available
2025-01-16T11:58:04Z  
dc.date.issued
2023-11  
dc.identifier.citation
Gaia Amorós, Jeremías; Orosco, Eugenio Conrado; Rossomando, Francisco Guido; Soria, Carlos Miguel; Fast FPGA-Based Image Feature Extraction for Data Fusion in Autonomous Vehicles; SCI-THOTH Editorial; International Journal of Engineering Insights; 1; 1; 11-2023; 1-8  
dc.identifier.uri
http://hdl.handle.net/11336/252730  
dc.description.abstract
Computer vision plays a critical role in many applications, particularly in the domain of autonomous vehicles. To achieve high-level image processing tasks such as image classification and object tracking, it is essential to extract low-level features from the image data. However, in order to integrate these compute-intensive tasks into a control loop, they must be completed as quickly as possible. This paper presents a novel FPGA-based system for fast and accurate image feature extraction, specifically designed to meet the constraints of data fusion in autonomous vehicles. The system computes a set of generic statistical image features, including contrast, homogeneity, and entropy, and is implemented on two Xilinx FPGA platforms - an Alveo U200 Data Center Accelerator Card and a Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit. Experimental results show that the proposed system achieves high-speed image feature extraction with low latency, making it well-suited for use in autonomous vehicle systems that require real-time image processing. The presented system can also be easily extended to extract additional features for various image and data fusion applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
SCI-THOTH Editorial  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
FPGA  
dc.subject
SoC  
dc.subject
Image Processing  
dc.subject
xfOpencv  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Fast FPGA-Based Image Feature Extraction for Data Fusion in Autonomous Vehicles  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-21T14:52:34Z  
dc.identifier.eissn
3028-8606  
dc.journal.volume
1  
dc.journal.number
1  
dc.journal.pagination
1-8  
dc.journal.pais
Ecuador  
dc.journal.ciudad
Quito  
dc.description.fil
Fil: Gaia Amorós, Jeremías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Orosco, Eugenio Conrado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.journal.title
International Journal of Engineering Insights  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://injei.sci-thoth.com/index.php/journal/article/view/3