Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics

Soler Toscano, Fernando; Galadí, Javier A.; Escrichs, Anira; Sanz Perl Hernandez, YonatanIcon ; López González, Ane; Sitt, Jacobo D.; Annen, Jitka; Gosseries, Olivia; Thibaut, Aurore; Panda, Rajanikant; Esteban, Francisco J.; Laureys, Steven; Kringelbach, Morten L.; Langa, José A.; Deco, Gustavo
Fecha de publicación: 09/2022
Editorial: Public Library of Science
Revista: PLOS Computational Biology
ISSN: 1553-7358
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or ‘information structure’), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision.
Palabras clave: Reduced Consciousness , fMRI , Dynamical landscape , Biomarkers
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.878Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/252680
URL: https://dx.plos.org/10.1371/journal.pcbi.1010412
DOI: http://dx.doi.org/10.1371/journal.pcbi.1010412
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Soler Toscano, Fernando; Galadí, Javier A.; Escrichs, Anira; Sanz Perl Hernandez, Yonatan; López González, Ane; et al.; What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics; Public Library of Science; PLOS Computational Biology; 18; 9; 9-2022; 1-20
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES