Mostrar el registro sencillo del ítem

dc.contributor.author
Caggiano, Antonio  
dc.contributor.author
Vrech, Sonia Mariel  
dc.contributor.author
Etse, Jose Guillermo  
dc.date.available
2025-01-16T10:50:22Z  
dc.date.issued
2024-11  
dc.identifier.citation
Caggiano, Antonio; Vrech, Sonia Mariel; Etse, Jose Guillermo; Hyperbolic/elliptic‐ CAP formulation for FRCC based on microplane constitutive theory; Wiley; Structural Concrete; 11-2024; 1-20  
dc.identifier.issn
1464-4177  
dc.identifier.uri
http://hdl.handle.net/11336/252671  
dc.description.abstract
The present work describes an elasto-plastic constitutive formulation aimed at simulating the failure behavior of Fiber Reinforced Cementitious Composites (FRCCs). This proposal, based on the Microplane Theory and Smeared Crack Approach (SCA), assumes a hyperbolic maximum strength criterion for the cementitious matrix in terms of normal and shear (micro-)stresses, evaluated on generally oriented planes (microplanes). A combination of an associated/ non-associated plastic flow rule in conjunction with a fracture energy-based softening law is defined to complete the modeling approach. The Mixture Theory is applied with the aim of characterizing the fiber-to-concrete interactions, described by considering two fundamental interaction phenomena: bridging debonding effects and dowel actions. Numerical analysis of FRCC failure behavior at the constitutive level is performed. Particularly, the soundness and capabilities of this approach are assessed against experimental data from tensile, shear, and compressive tests on FRCC samples. Simple shear tests are also evaluated to analyze the influence of the microplanes approximation over the unit microplane hemisphere. Comparisons against a discontinuous zero-thickness interface model are proposed. Numerical results also illustrate the capabilities of the proposed constitutive theory to reproduce brittle or localized failure modes in limit stress states through discontinuous bifurcation analysis.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
concrete  
dc.subject
failure  
dc.subject
fibers  
dc.subject
FRCC  
dc.subject
microplanes  
dc.subject
mixture  
dc.subject.classification
Otras Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Hyperbolic/elliptic‐ CAP formulation for FRCC based on microplane constitutive theory  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-01-14T14:32:22Z  
dc.identifier.eissn
1751-7648  
dc.journal.pagination
1-20  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Caggiano, Antonio. Universidad de Genova; España  
dc.description.fil
Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina  
dc.description.fil
Fil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina  
dc.journal.title
Structural Concrete  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/suco.202300875  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/suco.202300875