Artículo
Automorphisms of non-singular nilpotent Lie algebras
Fecha de publicación:
03/2013
Editorial:
Heldermann Verlag
Revista:
Journal Of Lie Theory
ISSN:
0949-5932
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
For a real, non-singular, 2-step nilpotent Lie algebra n, the group Aut(n)/ Aut0(n), where Aut0(n) is the group of automorphisms which act trivially on the center, is the direct product of a compact group with the 1-dimensional group of dilations. Maximality of some automorphisms groups of n follows and is related to how close is n to being of Heisenberg type. For example, at least when the dimension of the center is two, dim Aut(n) is maximal if and only if n is of Heisenberg type. The connection with fat distributions is discussed.
Palabras clave:
Automerphisms
,
Nilpotent
,
Lie
,
Algebras
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Kaplan, Aroldo; Tiraboschi, Alejandro Leopoldo; Automorphisms of non-singular nilpotent Lie algebras; Heldermann Verlag; Journal Of Lie Theory; 23; 4; 3-2013; 1085-1100
Compartir