Mostrar el registro sencillo del ítem

dc.contributor.author
Vohryzek, Jakub  
dc.contributor.author
Cabral, Joana  
dc.contributor.author
Castaldo, Francesca  
dc.contributor.author
Sanz Perl Hernandez, Yonatan  
dc.contributor.author
Lord, Louis David  
dc.contributor.author
Fernandes, Henrique M.  
dc.contributor.author
Litvak, Vladimir  
dc.contributor.author
Kringelbach, Morten L.  
dc.contributor.author
Deco, Gustavo  
dc.date.available
2025-01-14T11:52:38Z  
dc.date.issued
2023-06  
dc.identifier.citation
Vohryzek, Jakub; Cabral, Joana; Castaldo, Francesca; Sanz Perl Hernandez, Yonatan; Lord, Louis David; et al.; Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling; Elsevier; Computational and Structural Biotechnology Journal; 21; 6-2023; 335-345  
dc.identifier.issn
2001-0370  
dc.identifier.uri
http://hdl.handle.net/11336/252459  
dc.description.abstract
Traditionally, in neuroimaging, model-free analyses are used to find significant differences between brain states via signal detection theory. Depending on the a priori assumptions about the underlying data, different spatio-temporal features can be analysed. Alternatively, model-based techniques infer features from the data and compare significance from model parameters. However, to assess transitions from one brain state to another remains a challenge in current paradigms. Here, we introduce a “Dynamic Sensitivity Analysis” framework that quantifies transitions between brain states in terms of stimulation ability to rebalance spatio-temporal brain activity towards a target state such as healthy brain dynamics. In practice, it means building a whole-brain model fitted to the spatio-temporal description of brain dynamics, and applying systematic stimulations in-silico to assess the optimal strategy to drive brain dynamics towards a target state. Further, we show how Dynamic Sensitivity Analysis extends to various brain stimulation paradigms, ultimately contributing to improving the efficacy of personalised clinical interventions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Spatio-temporal dynamics  
dc.subject
Brain stimulation  
dc.subject
Whole-brain models  
dc.subject
Brain States  
dc.subject.classification
Neurociencias  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-01-13T12:12:54Z  
dc.journal.volume
21  
dc.journal.pagination
335-345  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Vohryzek, Jakub. Universitat Pompeu Fabra; España. University of Oxford; Reino Unido  
dc.description.fil
Fil: Cabral, Joana. University of Oxford; Reino Unido  
dc.description.fil
Fil: Castaldo, Francesca. Imperial College London; Reino Unido  
dc.description.fil
Fil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Lord, Louis David. Imperial College London; Reino Unido  
dc.description.fil
Fil: Fernandes, Henrique M.. University of Oxford; Reino Unido  
dc.description.fil
Fil: Litvak, Vladimir. University of Oxford; Reino Unido  
dc.description.fil
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido  
dc.description.fil
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España  
dc.journal.title
Computational and Structural Biotechnology Journal  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2001037022005530  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csbj.2022.11.060