Mostrar el registro sencillo del ítem
dc.contributor.author
Vohryzek, Jakub
dc.contributor.author
Cabral, Joana
dc.contributor.author
Castaldo, Francesca
dc.contributor.author
Sanz Perl Hernandez, Yonatan
dc.contributor.author
Lord, Louis David
dc.contributor.author
Fernandes, Henrique M.
dc.contributor.author
Litvak, Vladimir
dc.contributor.author
Kringelbach, Morten L.
dc.contributor.author
Deco, Gustavo
dc.date.available
2025-01-14T11:52:38Z
dc.date.issued
2023-06
dc.identifier.citation
Vohryzek, Jakub; Cabral, Joana; Castaldo, Francesca; Sanz Perl Hernandez, Yonatan; Lord, Louis David; et al.; Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling; Elsevier; Computational and Structural Biotechnology Journal; 21; 6-2023; 335-345
dc.identifier.issn
2001-0370
dc.identifier.uri
http://hdl.handle.net/11336/252459
dc.description.abstract
Traditionally, in neuroimaging, model-free analyses are used to find significant differences between brain states via signal detection theory. Depending on the a priori assumptions about the underlying data, different spatio-temporal features can be analysed. Alternatively, model-based techniques infer features from the data and compare significance from model parameters. However, to assess transitions from one brain state to another remains a challenge in current paradigms. Here, we introduce a “Dynamic Sensitivity Analysis” framework that quantifies transitions between brain states in terms of stimulation ability to rebalance spatio-temporal brain activity towards a target state such as healthy brain dynamics. In practice, it means building a whole-brain model fitted to the spatio-temporal description of brain dynamics, and applying systematic stimulations in-silico to assess the optimal strategy to drive brain dynamics towards a target state. Further, we show how Dynamic Sensitivity Analysis extends to various brain stimulation paradigms, ultimately contributing to improving the efficacy of personalised clinical interventions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Spatio-temporal dynamics
dc.subject
Brain stimulation
dc.subject
Whole-brain models
dc.subject
Brain States
dc.subject.classification
Neurociencias
dc.subject.classification
Medicina Básica
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-01-13T12:12:54Z
dc.journal.volume
21
dc.journal.pagination
335-345
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Vohryzek, Jakub. Universitat Pompeu Fabra; España. University of Oxford; Reino Unido
dc.description.fil
Fil: Cabral, Joana. University of Oxford; Reino Unido
dc.description.fil
Fil: Castaldo, Francesca. Imperial College London; Reino Unido
dc.description.fil
Fil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Lord, Louis David. Imperial College London; Reino Unido
dc.description.fil
Fil: Fernandes, Henrique M.. University of Oxford; Reino Unido
dc.description.fil
Fil: Litvak, Vladimir. University of Oxford; Reino Unido
dc.description.fil
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido
dc.description.fil
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España
dc.journal.title
Computational and Structural Biotechnology Journal
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2001037022005530
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csbj.2022.11.060
Archivos asociados