Mostrar el registro sencillo del ítem
dc.contributor.author
Pimentel, F. M. L.
dc.contributor.author
de la Cruz Felix de Perez, Nelphy
dc.contributor.author
Ramírez, Lucía Soledad
dc.contributor.author
Ramirez Pastor, Antonio Jose
dc.date.available
2025-01-13T12:42:47Z
dc.date.issued
2023-06
dc.identifier.citation
Pimentel, F. M. L.; de la Cruz Felix de Perez, Nelphy; Ramírez, Lucía Soledad; Ramirez Pastor, Antonio Jose; Inverse percolation by removing straight semirigid rods from bilayer square lattices; American Physical Society; Physical Review E; 107; 6; 6-2023; 1-11
dc.identifier.issn
2470-0053
dc.identifier.uri
http://hdl.handle.net/11336/252352
dc.description.abstract
Numerical simulations and finite-size scaling analysis have been carried out to study the problem of inverse percolation by removing semirigid rods from a L × L square lattice that contains two layers (and M = L × L × 2 sites). The process starts with an initial configuration where all lattice sites are occupied by single monomers (each monomer occupies one lattice site) and, consequently, the opposite sides of the lattice are connected by nearest-neighbor occupied sites. Then the system is diluted by removing groups of k consecutive monomers according to a generalized random sequential adsorption mechanism. The study is conducted by following thebehavior of two critical concentrations with size k: (1) jamming coverage θj,k , which represents the concentration of occupied sites at which the jamming state is reached, and (2) inverse percolation threshold θc,k, which corresponds to the maximum concentration of occupied sites for which connectivity disappears. The obtained results indicate that (1) the jamming coverage exhibits an increasing dependence on the size k—it rapidly increases for small values of k and asymptotically converges towards a definite value for infinitely large k sizes θj,k→∞ ≈ 0.2701—and (2) the inverse percolation threshold is a decreasing function of k in the range 1 k 17. For k 18, all jammed configurations are percolating states (the lattice remains connected even when the highest allowed concentration of removed sites is reached) and, consequently, there is no nonpercolatingphase. This finding contrasts with the results obtained in literature for a complementary problem, where straight rigid k-mers are randomly and irreversibly deposited on a square lattice forming two layers. In this case, percolating and nonpercolating phases extend to infinity in the space of the parameter k and the model presents percolation transition for the whole range of k. The results obtained in the present study were also compared with those reported for the case of inverse percolation by removal of rigid linear k-mers from a square monolayer.The differences observed between monolayer and bilayer problems were discussed in terms of vulnerability and network robustness. Finally, the accurate determination of the critical exponents ν, β, and γ reveals that the percolation phase transition involved in the system has the same universality class as the standard percolation problem.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Physical Society
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Jamming
dc.subject
Percolation
dc.subject
Monte Carlo simulation
dc.subject
k-mers
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Inverse percolation by removing straight semirigid rods from bilayer square lattices
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-11-27T10:01:58Z
dc.journal.volume
107
dc.journal.number
6
dc.journal.pagination
1-11
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Pimentel, F. M. L.. Universidad Autonoma Santo Domingo; República Dominicana
dc.description.fil
Fil: de la Cruz Felix de Perez, Nelphy. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
dc.description.fil
Fil: Ramírez, Lucía Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
dc.description.fil
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
dc.journal.title
Physical Review E
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.107.064128
Archivos asociados