Artículo
Fault Detection in Induction Motors using Functional Dimensionality Reduction Methods
Fecha de publicación:
06/2023
Editorial:
Cornell University
Revista:
arXiv
e-ISSN:
2331-8422
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The implementation of strategies for fault detection and diagnosis on rotating electrical machines is crucial for the reliability and safety of modern industrial systems. The contribution of this work is a methodology that combines conventional strategy of Motor Current Signature Analysis with functional dimensionality reduction methods, namely Functional Principal Components Analysis and Functional Diffusion Maps, for detecting and classifying fault conditions in induction motors. The results obtained from the proposed scheme are very encouraging, revealing a potential use in the future not only for real-time detection of the presence of a fault in an induction motor, but also in the identification of a greater number of types of faults present through an offline analysis.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IITEMA)
Articulos de INSTITUTO DE INVESTIGACIONES EN TECNOLOGIAS ENERGETICAS Y MATERIALES AVANZADOS
Articulos de INSTITUTO DE INVESTIGACIONES EN TECNOLOGIAS ENERGETICAS Y MATERIALES AVANZADOS
Citación
Barroso, María; Bossio, Jose Maria; Alaíz, Carlos; Fernández, Eliana Ángela; Fault Detection in Induction Motors using Functional Dimensionality Reduction Methods; Cornell University; arXiv; 6-2023; 1-26
Compartir
Altmétricas