Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Methodology for classification of geographical features with remote sensing images: Application to tidal flats

Revollo Sarmiento, Gisela NoeliaIcon ; Cipolletti, Marina PaolaIcon ; Perillo, Mauricio MiguelIcon ; Delrieux, Claudio AugustoIcon ; Perillo, Gerardo Miguel E.Icon
Fecha de publicación: 01/2016
Editorial: Elsevier Science
Revista: Geomorphology
ISSN: 0169-555X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Oceanografía, Hidrología, Recursos Hídricos

Resumen

Tidal flats generally exhibit ponds of diverse size, shape, orientation and origin. Studying the genesis, evolution, stability and erosive mechanisms of these geographic features is critical to understand the dynamics of coastal wetlands. However, monitoring these locations through direct access is hard and expensive, not always feasible, and environmentally damaging. Processing remote sensing images is a natural alternative for the extraction of qualitative and quantitative data due to their non-invasive nature. In this work, a robust methodology for automatic classification of ponds and tidal creeks in tidal flats using Google Earth images is proposed. The applicability of our method is tested in nine zones with different morphological settings. Each zone is processed by a segmentation stage, where ponds and tidal creeks are identified. Next, each geographical feature is measured and a set of shape descriptors is calculated. This dataset, together with a-priori classification of each geographical feature, is used to define a regression model, which allows an extensive automatic classification of large volumes of data discriminating ponds and tidal creeks against other various geographical features. In all cases, we identified and automatically classified different geographic features with an average accuracy over 90% (89.7% in the worst case, and 99.4% in the best case). These results show the feasibility of using freely available Google Earth imagery for the automatic identification and classification of complex geographical features. Also, the presented methodology may be easily applied in other wetlands of the world and perhaps employing other remote sensing imagery.
Palabras clave: Ponds , Tidal Courses , Object Detection , Shape Descriptor
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 5.716Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/25224
URL: http://www.sciencedirect.com/science/article/pii/S0169555X15302403
DOI: http://dx.doi.org/10.1016/j.geomorph.2015.12.020
Colecciones
Articulos(IADO)
Articulos de INST.ARG.DE OCEANOGRAFIA (I)
Articulos(IIIE)
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
Revollo Sarmiento, Gisela Noelia; Cipolletti, Marina Paola; Perillo, Mauricio Miguel; Delrieux, Claudio Augusto; Perillo, Gerardo Miguel E.; Methodology for classification of geographical features with remote sensing images: Application to tidal flats; Elsevier Science; Geomorphology; 257; 1-2016; 10-22
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES