Artículo
Methodology for classification of geographical features with remote sensing images: Application to tidal flats
Revollo Sarmiento, Gisela Noelia
; Cipolletti, Marina Paola
; Perillo, Mauricio Miguel
; Delrieux, Claudio Augusto
; Perillo, Gerardo Miguel E.
Fecha de publicación:
01/2016
Editorial:
Elsevier Science
Revista:
Geomorphology
ISSN:
0169-555X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Tidal flats generally exhibit ponds of diverse size, shape, orientation and origin. Studying the genesis, evolution, stability and erosive mechanisms of these geographic features is critical to understand the dynamics of coastal wetlands. However, monitoring these locations through direct access is hard and expensive, not always feasible, and environmentally damaging. Processing remote sensing images is a natural alternative for the extraction of qualitative and quantitative data due to their non-invasive nature. In this work, a robust methodology for automatic classification of ponds and tidal creeks in tidal flats using Google Earth images is proposed. The applicability of our method is tested in nine zones with different morphological settings. Each zone is processed by a segmentation stage, where ponds and tidal creeks are identified. Next, each geographical feature is measured and a set of shape descriptors is calculated. This dataset, together with a-priori classification of each geographical feature, is used to define a regression model, which allows an extensive automatic classification of large volumes of data discriminating ponds and tidal creeks against other various geographical features. In all cases, we identified and automatically classified different geographic features with an average accuracy over 90% (89.7% in the worst case, and 99.4% in the best case). These results show the feasibility of using freely available Google Earth imagery for the automatic identification and classification of complex geographical features. Also, the presented methodology may be easily applied in other wetlands of the world and perhaps employing other remote sensing imagery.
Palabras clave:
Ponds
,
Tidal Courses
,
Object Detection
,
Shape Descriptor
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IADO)
Articulos de INST.ARG.DE OCEANOGRAFIA (I)
Articulos de INST.ARG.DE OCEANOGRAFIA (I)
Articulos(IIIE)
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
Revollo Sarmiento, Gisela Noelia; Cipolletti, Marina Paola; Perillo, Mauricio Miguel; Delrieux, Claudio Augusto; Perillo, Gerardo Miguel E.; Methodology for classification of geographical features with remote sensing images: Application to tidal flats; Elsevier Science; Geomorphology; 257; 1-2016; 10-22
Compartir
Altmétricas