Mostrar el registro sencillo del ítem
dc.contributor.author
Capraro Fuentes, Flavio Andres
dc.contributor.author
Pacheco, Daniela
dc.contributor.author
Campillo Manrique, Pedro Lucio
dc.date.available
2025-01-09T18:04:10Z
dc.date.issued
2024
dc.identifier.citation
Characterization of Vineyard Training Systems Based on Remote Sensing and Crop Indices; VII Congreso Bienal Argencon IEEE 2024; San Nicolas de los Arroyos; Argentina; 2024; 1-7
dc.identifier.isbn
979-8-3503-6593-1
dc.identifier.uri
http://hdl.handle.net/11336/252208
dc.description.abstract
In the context of precision viticulture, this work presents the implementation of remote sensing techniques to analyze the spatial variability of a vineyard (Vitis vinifera L.). This work seeks to continue a preliminary investigation conducted in 2020; this time, the study area within the vineyard was expanded, and the campaigns of 2023 and 2024 were considered. This trial was conducted in a vineyard located in the province of San Juan, Argentina. The vineyard was divided into three blocks (replicates), and within each block, three training systems were randomly implemented: Free Cordon, Minimal Pruning and Box Pruning. The analysis was mainly based on extracting information from various vineyard maps constructed from high-resolution (2.5 cm pixel size) multispectral and thermographic images. These images were captured using special cameras mounted on an unmanned aerial vehicle (UAV). Vegetation indices NDVI and NDRE were calculated from the orthomosaics. The spatial distribution of each index and the crop temperature (Tc) were studied, and measurements were subsequently recorded in plants within each training system. Based on these measurements, significant differences were identified among the three training systems. The results demonstrated the usefulness of the high-resolution images acquired to assess the vineyard's condition at the plant level, allowing the producer to manage each training system specifically.
dc.format
application/pdf
dc.language.iso
spa
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AGRICULTURE
dc.subject
PRECISION VITICULTURE
dc.subject
REMOTE SENSING, UNMANNED AERIAL VEHICLES (UAV)
dc.subject
THERMOGRAPHIC AND MULTISPECTRAL IMAGES
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Characterization of Vineyard Training Systems Based on Remote Sensing and Crop Indices
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2025-01-09T17:56:15Z
dc.journal.pagination
1-7
dc.journal.pais
Argentina
dc.journal.ciudad
Buenos Aires
dc.description.fil
Fil: Capraro Fuentes, Flavio Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.description.fil
Fil: Pacheco, Daniela. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza - San Juan. Estación Experimental Agropecuaria San Juan; Argentina
dc.description.fil
Fil: Campillo Manrique, Pedro Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10735888/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1109/ARGENCON62399.2024.10735888
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Nacional
dc.type.subtype
Congreso
dc.description.nombreEvento
VII Congreso Bienal Argencon IEEE 2024
dc.date.evento
2024-09-18
dc.description.ciudadEvento
San Nicolas de los Arroyos
dc.description.paisEvento
Argentina
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers. Sección Argentina
dc.description.institucionOrganizadora
Universidad Tecnológica Nacional. Facultad Regional de San Nicolás
dc.source.libro
2024 IEEE Biennial Congress of Argentina (ARGENCON)
dc.date.eventoHasta
2024-09-20
dc.type
Congreso
Archivos asociados