Mostrar el registro sencillo del ítem

dc.contributor.author
Idesis, Sebastian  
dc.contributor.author
Geli, Sebastián  
dc.contributor.author
Faskowitz, Joshua  
dc.contributor.author
Vohryzek, Jakub  
dc.contributor.author
Sanz Perl Hernandez, Yonatan  
dc.contributor.author
Pieper, Florian  
dc.contributor.author
Galindo Leon, Edgar  
dc.contributor.author
Engel, Andreas K.  
dc.contributor.author
Deco, Gustavo  
dc.date.available
2025-01-08T09:49:22Z  
dc.date.issued
2024-01  
dc.identifier.citation
Idesis, Sebastian; Geli, Sebastián; Faskowitz, Joshua; Vohryzek, Jakub; Sanz Perl Hernandez, Yonatan; et al.; Functional hierarchies in brain dynamics characterized by signal reversibility in ferret cortex; Public Library of Science; PLOS Computational Biology; 20; 1; 1-2024; 1-21  
dc.identifier.issn
1553-7358  
dc.identifier.uri
http://hdl.handle.net/11336/251973  
dc.description.abstract
Brain signal irreversibility has been shown to be a promising approach to study neural dynamics. Nevertheless, the relation with cortical hierarchy and the influence of different electrophysiological features is not completely understood. In this study, we recorded local field potentials (LFPs) during spontaneous behavior, including awake and sleep periods, using custom micro-electrocorticographic (μECoG) arrays implanted in ferrets. In contrast to humans, ferrets remain less time in each state across the sleep-wake cycle. We deployed a diverse set of metrics in order to measure the levels of complexity of the different behavioral states. In particular, brain irreversibility, which is a signature of non-equilibrium dynamics, captured by the arrow of time of the signal, revealed the hierarchical organization of the ferret’s cortex. We found different signatures of irreversibility and functional hierarchy of large-scale dynamics in three different brain states (active awake, quiet awake, and deep sleep), showing a lower level of irreversibility in the deep sleep stage, compared to the other. Irreversibility also allowed us to disentangle the influence of different cortical areas and frequency bands in this process, showing a predominance of the parietal cortex and the theta band. Furthermore, when inspecting the embedded dynamic through a Hidden Markov Model, the deep sleep stage was revealed to have a lower switching rate and lower entropy production. These results suggest functional hierarchies in organization that can be revealed through thermodynamic features and information theory metrics.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Public Library of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Brain dynamics  
dc.subject
Ferrets  
dc.subject
Sleep  
dc.subject
Autoencoders  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Functional hierarchies in brain dynamics characterized by signal reversibility in ferret cortex  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-01-06T15:29:45Z  
dc.journal.volume
20  
dc.journal.number
1  
dc.journal.pagination
1-21  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Idesis, Sebastian. Universitat Pompeu Fabra; España  
dc.description.fil
Fil: Geli, Sebastián. Universitat Pompeu Fabra; España  
dc.description.fil
Fil: Faskowitz, Joshua. Indiana University; Estados Unidos  
dc.description.fil
Fil: Vohryzek, Jakub. Universitat Pompeu Fabra; España  
dc.description.fil
Fil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Pieper, Florian. Universitat Hamburg; Alemania  
dc.description.fil
Fil: Galindo Leon, Edgar. Universitat Hamburg; Alemania  
dc.description.fil
Fil: Engel, Andreas K.. Universitat Hamburg; Alemania  
dc.description.fil
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España  
dc.journal.title
PLOS Computational Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dx.plos.org/10.1371/journal.pcbi.1011818  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pcbi.1011818