Artículo
Exploring Tensor Completion for Missing Data Estimation in Wind Farms
Jia, Hao; Marti Puig, Pere; Caiafa, César Federico
; Serra Serra, Moises; Sun, Zhe; Solé Casals, Jordi

Fecha de publicación:
10/2024
Editorial:
IEEE
Revista:
IEEE Sensors Letters
e-ISSN:
2475-1472
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The large number of greenhouse gas emissions caused by human activities, and their harmful effect on the earth´s climate, have reached a point where actions are needed. Wind energy is one of the available green energies that can be used to mitigate this problem. Predictive maintenance is of vital importance to ensure continuous wind power generation and is typically based on the use of sensor data from all wind turbine systems. But in some cases, data contain outliers or are not available at all due to sensor or system failures. In this paper, we explore the use of tensor completion methods to estimate missing data in this field. Experimental results demonstrate the usefulness of the proposed tensor completion algorithms, especially the HaLRTC method, which outperforms the interpolation method used as a reference.
Palabras clave:
Algorithms
,
Energy
,
Missing entries
,
wind farms
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAR)
Articulos de INST.ARG.DE RADIOASTRONOMIA (I)
Articulos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
Jia, Hao; Marti Puig, Pere; Caiafa, César Federico; Serra Serra, Moises; Sun, Zhe; et al.; Exploring Tensor Completion for Missing Data Estimation in Wind Farms; IEEE; IEEE Sensors Letters; 8; 12; 10-2024; 1-4
Compartir
Altmétricas