Mostrar el registro sencillo del ítem
dc.contributor.author
Martínez Molina, Noelia
dc.contributor.author
Sanz Perl Hernandez, Yonatan
dc.contributor.author
Escrichs, Anira
dc.contributor.author
Kringelbach, Morten L.
dc.contributor.author
Deco, Gustavo
dc.date.available
2025-01-07T09:46:51Z
dc.date.issued
2024-03
dc.identifier.citation
Martínez Molina, Noelia; Sanz Perl Hernandez, Yonatan; Escrichs, Anira; Kringelbach, Morten L.; Deco, Gustavo; Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury; Frontiers Media; Frontiers in Neuroinformatics; 18; 3-2024; 1-7
dc.identifier.issn
1662-5196
dc.identifier.uri
http://hdl.handle.net/11336/251825
dc.description.abstract
Traumatic Brain Injury (TBI) is a prevalent disorder mostly characterized by persistent impairments in cognitive function that poses a substantial burden on caregivers and the healthcare system worldwide. Crucially, severity classification is primarily based on clinical evaluations, which are non-specific and poorly predictive of long-term disability. In this Mini Review, we first provide a description of our model-free and model-based approaches within the turbulent dynamics framework as well as our vision on how they can potentially contribute to provide new neuroimaging biomarkers for TBI. In addition, we report the main findings of our recent study examining longitudinal changes in moderate-severe TBI (msTBI) patients during a one year spontaneous recovery by applying the turbulent dynamics framework (model-free approach) and the Hopf whole-brain computational model (model-based approach) combined with in silico perturbations. Given the neuroinflammatory response and heightened risk for neurodegeneration after TBI, we also offer future directions to explore the association with genomic information. Moreover, we discuss how whole-brain computational modeling may advance our understanding of the impact of structural disconnection on whole-brain dynamics after msTBI in light of our recent findings. Lastly, we suggest future avenues whereby whole-brain computational modeling may assist the identification of optimal brain targets for deep brain stimulation to promote TBI recovery.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Frontiers Media
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Neuroimaging
dc.subject
Turbulence
dc.subject
Traumatic Brain Injury
dc.subject
Whole-brain model
dc.subject.classification
Neurociencias
dc.subject.classification
Medicina Básica
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-01-06T15:31:42Z
dc.journal.volume
18
dc.journal.pagination
1-7
dc.journal.pais
Suiza
dc.description.fil
Fil: Martínez Molina, Noelia. Universitat Pompeu Fabra; España
dc.description.fil
Fil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Escrichs, Anira. Universitat Pompeu Fabra; España
dc.description.fil
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido
dc.description.fil
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España
dc.journal.title
Frontiers in Neuroinformatics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fninf.2024.1382372/full
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/fninf.2024.1382372
Archivos asociados