Mostrar el registro sencillo del ítem

dc.contributor.author
Martínez Molina, Noelia  
dc.contributor.author
Sanz Perl Hernandez, Yonatan  
dc.contributor.author
Escrichs, Anira  
dc.contributor.author
Kringelbach, Morten L.  
dc.contributor.author
Deco, Gustavo  
dc.date.available
2025-01-07T09:46:51Z  
dc.date.issued
2024-03  
dc.identifier.citation
Martínez Molina, Noelia; Sanz Perl Hernandez, Yonatan; Escrichs, Anira; Kringelbach, Morten L.; Deco, Gustavo; Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury; Frontiers Media; Frontiers in Neuroinformatics; 18; 3-2024; 1-7  
dc.identifier.issn
1662-5196  
dc.identifier.uri
http://hdl.handle.net/11336/251825  
dc.description.abstract
Traumatic Brain Injury (TBI) is a prevalent disorder mostly characterized by persistent impairments in cognitive function that poses a substantial burden on caregivers and the healthcare system worldwide. Crucially, severity classification is primarily based on clinical evaluations, which are non-specific and poorly predictive of long-term disability. In this Mini Review, we first provide a description of our model-free and model-based approaches within the turbulent dynamics framework as well as our vision on how they can potentially contribute to provide new neuroimaging biomarkers for TBI. In addition, we report the main findings of our recent study examining longitudinal changes in moderate-severe TBI (msTBI) patients during a one year spontaneous recovery by applying the turbulent dynamics framework (model-free approach) and the Hopf whole-brain computational model (model-based approach) combined with in silico perturbations. Given the neuroinflammatory response and heightened risk for neurodegeneration after TBI, we also offer future directions to explore the association with genomic information. Moreover, we discuss how whole-brain computational modeling may advance our understanding of the impact of structural disconnection on whole-brain dynamics after msTBI in light of our recent findings. Lastly, we suggest future avenues whereby whole-brain computational modeling may assist the identification of optimal brain targets for deep brain stimulation to promote TBI recovery.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Frontiers Media  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Neuroimaging  
dc.subject
Turbulence  
dc.subject
Traumatic Brain Injury  
dc.subject
Whole-brain model  
dc.subject.classification
Neurociencias  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-01-06T15:31:42Z  
dc.journal.volume
18  
dc.journal.pagination
1-7  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Martínez Molina, Noelia. Universitat Pompeu Fabra; España  
dc.description.fil
Fil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Escrichs, Anira. Universitat Pompeu Fabra; España  
dc.description.fil
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido  
dc.description.fil
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España  
dc.journal.title
Frontiers in Neuroinformatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fninf.2024.1382372/full  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/fninf.2024.1382372