Mostrar el registro sencillo del ítem

dc.contributor.author
Previgliano, Fabricio José  
dc.contributor.author
Vulcano, Gustavo  
dc.date.available
2025-01-06T15:09:25Z  
dc.date.issued
2022-03  
dc.identifier.citation
Previgliano, Fabricio José; Vulcano, Gustavo; Managing Uncertain Capacities for Network Revenue Optimization; Informs; M&som-manufacturing & Service Operations Management; 24; 2; 3-2022; 1202-1219  
dc.identifier.issn
1523-4614  
dc.identifier.uri
http://hdl.handle.net/11336/251787  
dc.description.abstract
Problem definition: We study the problem of managing uncertain capacities for revenue optimization over a network of resources. The uncertainty could be due to (i) the need to reallocate initial capacities among resources or (ii) the random availability of physical capacities by the time of service execution. Academic/practical relevance: The analyzed control policy is aligned with the current industry practice, with a virtual capacity and a bid price associated with each network resource. The seller collects revenues from an arriving stream of customers. Admitted requests that cannot be accommodated within the final, effective capacities incur a penalty cost. The objective is to maximize the total cumulative net revenue (sales revenue minus penalty cost). The problem arises in practice, for instance, when airlines are subject to last-minute change of aircrafts and in cargo revenue management where the capacity left by the passengers? load is used for freight. Methodology: We present a stochastic dynamic programming formulation for this problem and propose a stochastic gradient algorithm to approximately solve it. All limit points of our algorithm are stationary points of the approximate expected net revenue function. Results: Through an exhaustive numerical study, we show that our controls are computed efficiently and deliver revenues that are almost consistently higher than the ones obtained from benchmarks based on the widely adopted deterministic linear programming model. Managerial implications: We obtain managerial insights about the impact of the timing of the capacity uncertainty clearance, the capacity heterogeneity, the network congestion, and the penalty for not being able to accommodate the previously accepted demand. Our approach tends to offer the best performance across different parameterizations of the problem.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Informs  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Stochastic gradient  
dc.subject
Bid-prices  
dc.subject
Cargo revenue management  
dc.subject
Network control  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Managing Uncertain Capacities for Network Revenue Optimization  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-12-23T11:45:37Z  
dc.journal.volume
24  
dc.journal.number
2  
dc.journal.pagination
1202-1219  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Previgliano, Fabricio José. University of Chicago; Estados Unidos  
dc.description.fil
Fil: Vulcano, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Escuela de Negocios; Argentina  
dc.journal.title
M&som-manufacturing & Service Operations Management  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubsonline.informs.org/doi/10.1287/msom.2021.0993  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1287/msom.2021.0993