Mostrar el registro sencillo del ítem

dc.contributor.author
Campos, Túlio M.  
dc.contributor.author
Petit, Andres  
dc.contributor.author
Freitas, Ricardo O.  
dc.contributor.author
Tavares, Luís Marcelo  
dc.date.available
2025-01-06T13:52:04Z  
dc.date.issued
2023-10  
dc.identifier.citation
Campos, Túlio M.; Petit, Andres; Freitas, Ricardo O.; Tavares, Luís Marcelo; Online prediction of pressing iron ore concentrates in an industrial HPGR. Part 2: Digital assistant; Pergamon-Elsevier Science Ltd; Minerals Engineering; 201; 10-2023; 1-10  
dc.identifier.issn
0892-6875  
dc.identifier.uri
http://hdl.handle.net/11336/251755  
dc.description.abstract
Besides the recent advances in high-pressure grinding rolls (HPGR) technology, the good track record demonstrates the potential growth in its applications in the future. In this regard, challenges are emerging driven by technology improvements and the increasing demand for a proper understanding of the operation and optimization of the grinding process in different scenarios. To fill this gap, new dynamic modeling and simulation approaches have been evolving to capture information of the process in real-time using online tools. However, proper application of these models as online digital assistants is still missing. The present work applies the online modeling approach proposed by the authors in the first part of this series as a digital assistant. The digital assistant receives real-time information of an industrial-scale HPGR pressing of iron ore concentrates and uses the Modified Torres and Casali model to predict the main HPGR performance variables. At first, a quantitative description of the HPGR hydro-pneumatic pressurizing system is calibrated and validated describing the relationship between hydraulic pressure and gap in the industrial machine. Feasibility of applying the online model as a digital assistant was demonstrated from two simulation case studies by providing setpoints of hydraulic pressure based on real-time changes in HPGR feed BSA, with the aim of reducing the variabilities of the HPGR product BSA and absorbing a coarser feed BSA.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Iron Ore  
dc.subject
HPGR  
dc.subject
Online Digital Assistant  
dc.subject
Pellet Feed  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Online prediction of pressing iron ore concentrates in an industrial HPGR. Part 2: Digital assistant  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-27T09:14:11Z  
dc.journal.volume
201  
dc.journal.pagination
1-10  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Campos, Túlio M.. Universidade Federal do Rio de Janeiro; Brasil  
dc.description.fil
Fil: Petit, Andres. Universidade Federal do Rio de Janeiro; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. Sede Olavarría del Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia. de Bs.as. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. Sede Olavarría del Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina  
dc.description.fil
Fil: Freitas, Ricardo O.. No especifíca;  
dc.description.fil
Fil: Tavares, Luís Marcelo. Universidade Federal do Rio de Janeiro; Brasil  
dc.journal.title
Minerals Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0892687523002212  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.mineng.2023.108207