Artículo
An approach to the moments subset sum problem through systems of diagonal equations over finite fields
Fecha de publicación:
12/2024
Editorial:
Academic Press Inc Elsevier Science
Revista:
Finite Fields and Their Applications
ISSN:
1071-5797
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let Fq be the finite field of q elements, for a given subset D ⊂ Fq, m ∈ N, an integer k ≤ |D| and b ∈ F m q we are interested in determining the existence of a subset S ⊂ D of cardinality k such that P a∈S a i = bi for i = 1, . . . , m. This problem is known as the moment subset sum problem and it is NP-complete for a general D. We make a novel approach of this problem trough algebraic geometry tools analyzing the underlying variety and employing combinatorial techniques to estimate the number of Fq-rational points on certain varieties. We managed to give estimates on the number of Fq-rational points on certain diagonal equations and use this results to give estimations and existence results for the subset sum problem.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Gottig, Juan Francisco; Pérez, Mariana Valeria; Privitelli, Melina Lorena; An approach to the moments subset sum problem through systems of diagonal equations over finite fields; Academic Press Inc Elsevier Science; Finite Fields and Their Applications; 100; 102511; 12-2024; 1-25
Compartir
Altmétricas